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Abstract

Wepresent a PDE-based framework that generalizesGroup equivariant Convolutional Neural Networks (G-CNNs).
In this framework, a network layer is seen as a set of PDE-solvers where the equation’s geometrically meaningful
coefficients become the layer’s trainable weights. Formulating our PDEs on homogeneous spaces allows these
networks to be designed with built-in symmetries such as rotation equivariance instead of being restricted to just
translation equivariance as in traditional CNNs. Having all the desired symmetries included in the design obviates
the need to include them by means of costly techniques such as data augmentation. Roto-translation equivariance
for image analysis applications is the example we will be using throughout the paper.

Our default PDE is solved by a combination of linear group convolutions and non-linear morphological group
convolutions. Just like for linear convolution a morphological convolution is specified by a kernel and this kernel
is what is being optimized during the training process. We demonstrate how the common CNN operations of
max/min-pooling and ReLUs arise naturally from solving a PDE and how they are subsumed by morphological
convolutions.

We present a proof-of-concept experiment to demonstrate the potential of this framework in increasing the
performance of deep learning based imaging applications.

1 Introduction

1.1 PDE-guided CNN Design on Homogeneous Spaces

In this article we introduce PDE-guided CNN design on homogeneous spaces: we interpret layers of convolutional
neural networks as solvers of Partial Differential Equations, and show how to use this interpretation in the design
of such layers and full neural networks.
More specifically, we will explain how a convolutional neural network layer approximately solves a set of evolu-
tionary PDEs driven by convection, (fractional) diffusion and dilation and erosion as is illustrated in Fig. 1. They
correspond to the usual sublayers in a CNN: the convolution layer, a sub or super sampling layer and a max-pooling
layer.

Figure 1: Illustrating the architecture of a PDE Layer. The output from previous layer serves as initial
conditions to a set ofMl evolution equations at layer l, the solutions of which at a fixed time T will be
combined into new initial conditions for the next layer.
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1.2 Drawing Inspiration from PDE-based Image Analysis

Since the Partial Differential Equations that will arise from CNN layers are well-known in the context of geometric
image analysis [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], the layers also get an interpretation in terms of classical image-
processing operators. This allows intuition and techniques from geometric PDE-based image analysis to be carried
over to neural networks.
In geometric PDE-based image processing it can be beneficial to include mean curvature or other geometric flows
[12, 13, 14, 15] as regularization and our framework provides a natural way for such flows to be included into neural
networks. In the PDE-layer from Fig. 1 we only mention diffusion as a means of regularization, but mean curvature
flow could easily be integrated by replacing the diffusion sub-layer with a mean curvature flow sub-layer. This
would require replacing the linear convolution for diffusion by a median filtering approximation of mean curvature
flow.

1.3 The Need for Lifting Images

In geometric image analysis it is often useful to lift images from a 2D picture to a 3D orientation score as in Fig. 2
and do further processing on the orientation scores [16, 17]. A typical image processing task in which such a lift
is beneficial is that of the segmentation of blood vessels in a medical image. Algorithms based on processing the
2D picture directly, usually fail around points where two blood vessels cross, but algorithms that lift the image to
an orientation score manage to decouple the blood vessels with different orientations as is illustrated in the bottom
row of Fig. 2.
To be able to endow image-processing neural networks with the added capabilities (such as decoupling orientations
and guaranteeing equivariance) that result from lifting data to an extended domain, we develop our theory for the
more general CNNs defined on homogeneous spaces, rather than just the prevalent CNNs defined on Euclidean
space. One can then choose which homogeneous space to use based on the needs of one’s application (such as
needing to decouple orientations). A homogeneous space is, given subgroupH of a group G, the manifold of left
cosets, denoted by G∕H . In the above image-analysis example, the group G would be the special Euclidean group
G = SE(d), the subgroup H would be the stabilizer subgroup of a fixed reference axis, and the corresponding
homogeneous space G∕H would be the space of positions and orientations Md , which is the lowest dimensional
homogeneous space able to decouple orientations. By considering convolutional neural networks on homogeneous
spaces such asMd these networks have access to the same benefits of decoupling structures with different orienta-
tions as was highly beneficial for geometric image processing [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32].

1.4 The Need for Equivariance

We require the layers to be equivariant: a transformation of the input should lead to a corresponding transforma-
tion of the output, in such a way that first transforming the input and then applying the network or first applying the
network and then transforming the output yield the same result. A particular example, in which the output trans-
formation is trivial (i.e. the identity transformation), is that of invariance: in many classification tasks, such as the
recognition of objects in pictures, an apple should still be recognized as an apple even if it is shifted or otherwise
transformed in the picture as illustrated in Fig. 3. By guaranteeing equivariance of the network, the amount of data
necessary or the need for (geometric) data augmentation are reduced as the required symmetries are intrinsic to the
network and need not be trained.

1.5 Overall Architecture

We call the neural networks that follow from our design PDE-G-CNNs as they put equivariant G-CNNs [33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45] in a broader, PDE-based context.
A key aspect in our design is that we include equivariant morphological convolutions [46] on the homogeneous
space G∕H in our PDE-G-CNN. Normally, morphological convolutions are considered on ℝd [47, 48], but when
extended to Lie groups such as SE(d) they have many benefits in applications (e.g. crossing-preserving flow [49]
or tracking [50, 51]), this requires an overall network architecture as shown in Fig. 4.
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Figure 2: Illustrating the process of lifting and projecting, in this case the advantage of lifting an image
from ℝ2 to the 2D space of positions and orientationsM2 derives from the disentanglement of the lines
at the crossing.

Figure 3: Spatial CNNs, as used for image classification for example, are translation equivariant but
not necessarily equivariant with respect to rotation, scaling and other transformations as the tags of the
differently transformed apples images suggest. Building a G-CNN with the appropriately chosen group
confers the network with all the equivariances appropriate for the chosen application.

By treating the layers of CNNs as solvers of PDEs, we gain geometric interpretation of the layers and the involved
training parameters. Moreover, by making choices regarding which parameter to train and which not, one can
interpolate between a strongly guided design with many geometric priors, towards a much more expressive network
with many more PDE parameters being determined by a training algorithm.
Remark 1.1 (Generality of the architecture). Although not considered here, for other Lie groups applications
(e.g. frequency scores[52], velocity scores, scale-orientation scores[53]) the same structure applies, therefore
we keep our theory in the general setting of homogeneous spaces G∕H .
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Figure 4: Illustrating the overall architecture of a PDE-G-CNN (example: retinal vessel segmentation).
An input image is lifted to a homogeneous space from which point on it can be fed through subsequent
PDE layers that replace the convolution layers in conventional CNNs. Finally the result is projected
back to the desired output space.

1.6 Related Work

G-CNNs After the introduction of G-CNNs by Cohen & Welling [33] in the field of machine and deep learning,
G-CNNs became popular. This resulted in many articles on showing the benefits of G-CNNs over classical spatial
CNNs. These works can be roughly categorised as

• discrete G-CNNs [33, 34, 35, 36, 37],
• regular continuous G-CNNs [50, 39, 40, 41, 54],
• and steerable continuous G-CNNs [42, 43, 44, 45, 55] that rely on Fourier transforms on homogeneous spaces

[56, 31].
Both regular and steerable G-CNNs naturally arise from linear mappings between functions on homogeneous spaces
that are placed under equivariance constraints [42, 44, 55, 54]. Regular G-CNNs explicitly extend the domain and
lift feature maps to a larger homogeneous space of a group, whereas steerable CNNs extend the co-domain by
generating fiber bundles in which a steerable feature vector is assigned to each position in the base domain. In
this work we adopt the domain extension viewpoint. Although steerable operators have clear benefits in terms
of computational efficiency and accuracy [57, 58], working with steerable representations puts constraints on non-
linear activationswithin the networkswhich limits representation power of G-CNNs [55]. Like regular G-CNNs, the
proposed PDE-G-CNNs do not suffer from this. In our proposed PDE-G-CNN framework it is moreover essential
that we adapt the domain-extension viewpoint, as this allows to naturally and transparently construct PDEs via
left-invariant vector fields.

Neural Networks and Differential Equations The connection between neural networks and differential equa-
tions became widely known in 2017, when Weinan E [59] made explicit the connection between neural networks
and dynamical systems especially in the context of the ultradeep ResNet [60]. This point of view was further ex-
panded by Lu et al. [61], showing howmany ultradeep neural networks can be viewed as discretizations of ordinary
differential equations. The somewhat opposite point of view was taken by Chen et al. [62], who introduced a new
type of neural network which no longer has discrete layers, them being replaced by a field parameterized by a
continuous time variable.
Weinan E also indicated a relationship between CNNs and PDEs, or rather with evolution equations involving a
nonlocal operator.
Implicitly, the connection between neural networks and differential equations was known before, such as in the
work by Chen et al. [63] who learn parameters in a reaction-diffusion equation. This connection between neural
networks and PDEs was then made explicit and more extensive by Long et al. who made it possible to learn a much
wider class of PDEs [64] with their PDE-Net. This contrasts with our equivariant PDE approach on homogeneous
spaces which are solvable by linear and (as we will see) morphological convolutions.
A particular useful aspect of the connection between neural networks and differential equations is the possible
insight that the stability of the differential equation can give geometric insight into the generalization ability of the
neural networks [65].
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1.7 Structure of the Article

The structure of the article is as follows. We first introduce the needed theoretical preliminaries from Lie group
theory in Section 2 where we also define the space of positions and orientationsMd that will allow us to construct
roto-translation equivariant networks. We assume that the reader has basic background in differential geometry.
In Section 3 we give the overall architecture of a PDE-G-CNN and the ancillary tools that are needed to support the
PDE layers that form the core of a PDE-G-CNN. We detail the design of these PDE layers in Section 4 and propose
an equivariant PDE that models commonly used operations in CNNs.
In Section 5 we detail how our PDE of interest can be solved using a process called operator splitting and how the
splitted sub-operators relate to operations in conventional CNNs. Additionally, we give tangible approximations
to the fundamental solutions of the PDEs that are both easy to compute and sufficiently accurate for practical
applications. The derivation of the approximate fundamental solution to the morphological part of our PDE is
considered in Section 6 as it is a more technical process.
We end our paper with a proof-of-concept experiment in Section 7 and concluding remarks in Section 8.
The framework we propose covers transformations and CNNs on homogeneous spaces in general and as such we
develop the theory in an abstract fashion. Tomaintain a bridgewith practical applications we give details throughout
the article on what form the abstractions take in the case of roto-translation equivariant networks, specifically in
2D.

2 Equivariance: Groups & Homogeneous Spaces

Wewant to design the PDE-G-CNN, and its layers, in such a way that they are equivariant. Equivariance essentially
means that one can either transform the input and then feed it through the network, or first feed it through the network
and then transform the output, and both give the same result. We will give a precise definition after introducing
general notation.

2.1 The General Case

A layer in a neural network (or indeed the whole network) can be viewed as an operator from a space of functions
defined on a space X to a space of functions defined on a space Y . It may be helpful to think of these function
spaces as spaces of images.
We assume that the possible transformations form a Lie group G. Think for instance of a group of translations
which shift the domain into different directions. Mathematically, we assume that the Lie group G acts smoothly on
both X and Y , which means that there are smooth maps �X ∶ G ×X → X and �Y ∶ G × Y → Y such that for all
g, ℎ ∈ G,

�X(gℎ, x) = �X(g, �X(ℎ, x)) and �Y (gℎ, x) = �Y (g, �Y (ℎ, x)).

Instead of �X(g, x) or �Y (ℎ, y)we will just write g.x and ℎ.y respectively and refer to these maps as the group action
of G onX respectively Y . In general it is clear from the element the group element is acting on which group action
is used and so there is no confusion in using the same symbol for all group actions.
We will assume that the group G acts transitively on the spaces, meaning that for any two elements of the space
there exists a transformation in G that maps one to the other. This has as the consequence that X and Y can be
seen as homogeneous spaces [66]. In particular, this means that after selecting a reference element x0 ∈ X we can
make the following isomorphism:

(

X,G, x0
)

≅ G∕StabG(x0) (1)
using the mapping

x↦
{

g ∈ G | g.x0 = x
}

, (2)
which is a bijection due to transitivity and the fact that StabG(x0) is a subgroup of G. Because of this we will
represent a homogeneous space as the quotientG∕H for some choice of subgroupH since all homogeneous spaces
are isomorphic to such a quotient by the above construction.
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The elements of the quotient G∕H consist of subsets of G which we denote by the letter p, these subsets are know
as left cosets ofH since every one of them consists of the set p = gH for some g ∈ G, the left cosets are a partition
of G under the equivalence relation

g1 ≡ g2 ⟺ g−11 g2 ∈ H.

We still use the group action notation to make a clear distinction between the group on the one hand and the quotient
that represent the homogeneous space on the other hand by defining

g.p ∶= gp, (3)
which is again a left coset and so an element of G∕H . This is a natural extension of the group action since by the
isomorphism (2) we now have

x
(2)
↦ p ⟺ g.x

(2)
↦ g.p (4)

as expected.
While by design the p’s are subsets of G we generally use them as atomic entities (“points”) that represent some
x ∈ X by p.x0 = x. In case we do want to use them explicitly as subsets of G to access the group elements within
we use the more explicit notation

Gp ∶= p ⊂ G. (5)
Under this notation the group G consists of the disjoint union

G =
∐

p∈G∕H
Gp. (6)

The left coset that is associated with the reference element x0 ∈ X is H and for that reason we also alias it by
p0 ∶= H so that the isomorphism (2) maps x0 ↦ p0.
Remark 2.1 (Principal homogeneous space). Observe that by choosingH = {e} we getG∕H ≡ G, i.e. the Lie
group is a homogeneous space of itself. This is called the principal homogeneous space. In that case the group
action is equivalent to the group composition.

The action on a homogeneous space G∕H induces an action on spaces of functions on G∕H . A neural network
layer is itself an operator (from functions on G∕HX to functions on G∕HY ), and we require the function to be
equivariant with respect to the actions on these function spaces.
Definition 2.2 (Equivariance). Let G be a Lie group with homogeneous spaces X and Y . Let Φ be an operator
from functions (of some function class) on X to functions on Y , then we say that Φ is equivariant with respect
to G if for all functions f (of that class) we have that:

∀g ∈ G, y ∈ Y ∶ (Φf ) (g.y) =
(

Φ [x↦ f (g.x)]
)

(y). (7)

Indeed, this definition expresses that one can either first apply the transformation g and then apply Φ, or first apply
Φ and then apply the transformation g, and the result is the same.
We will denote the group action/left-multiplication by an element g ∈ G by the operatorLg ∶ G∕H → G∕H given
by

Lgp ∶= g.p for all p ∈ G∕H. (8)
In addition, we denote the left-regular representation of G on functions f defined on G∕H by Lg defined by

(

Lgf
)

(p) ∶= f
(

g−1.p
)

. (9)
With this notation, condition (7) on our neural network operator Φ can be rewritten as: for all g ∈ G,

Lg ◦ Φ = Φ ◦ Lg . (10)
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2.2 Vector and Tensor Fields

The particular operators that we will base our framework on are vector and tensor fields and we explain what left
invariance means for these object next.
For g ∈ G and p ∈ G∕H , the pushforward

(

Lg
)

∗ ∶ Tp (G∕H)→ Tg.p (G∕H)

of the group action Lg is defined by the condition that for all smooth functions f on G∕H and all v ∈ Tp(G∕H)we have that
((

Lg
)

∗ v
)

f ∶= v
(

f ◦Lg
)

. (11)

Remark 2.3 (Tangent vectors as differential operators). Other then the usual geometric interpretation of tangent
vectors as being the velocity vectors ̇(t) tangent to some differentiable curve  ∶ ℝ → G∕H we will simul-
taneously use them as differential operators acting on functions as we did in (11). This algebraic viewpoint
defines the action of the tangent vector ̇(t) on a differentiable function f as

̇(t)f ∶= )
)s
f ((s)) ||

|t
.

In the flat setting of G = (

ℝd ,+
), where the tangent spaces are isomorphic to the base manifold ℝd , when we

have a tangent vector c ∈ ℝd its application to a function is the familiar directional derivative:
cf = c ⋅ ∇f = df (c).

See [67, §2.1.1] for details on this double interpretation.
Vector fields that have the special property that the push forward (Lg)∗ maps them to themselves in the sense that

∀g ∈ G,∀p ∈ G∕H ∶ v (p) f = v (g.p)
[

Lgf
]

, (12)
for all differentiable function f and where v ∶ p↦ Tp (G∕H) is a vector field, are referred to as left invariant.
Definition 2.4 (Left-invariant vector field on a homogeneous space). A vector field v on G∕H is left invariant
with respect to G if it satisfies

∀g ∈ G, ∀p ∈ G∕H ∶ v (g.p) =
(

Lg
)

∗ v (p) . (13)
It is straightforward to check that (12) and (13) are equivalent and that these imply the following.
Corollary 2.5 (Properties of left-invariant vector fields). On a homogeneous space G∕H with reference element
p0 the left-invariant vector fields have the following properties:

1. they are fully determined by their value v(p0) in p0,

2. ∀ℎ ∈ H, ∀v ∈ Tp0 (G∕H) ∶
(

Lℎ
)

∗ v = v.

We also introduce left-invariant metric tensor fields.
Definition 2.6 (Left-invariant metric tensor field). Let G be a Lie group and G∕H a homogeneous space then
the metric tensor field G on G∕H is left-invariant with respect to G if and only if

∀g ∈ G, ∀p ∈ G∕H, ∀v,w ∈ Tp (G∕H) ∶ G
|

|

|p
(v,w) = G

|

|

|g.p

(

(

Lg
)

∗ v,
(

Lg
)

∗w
)

. (14)

Recall that Lgp ∶= g.p and so the push-forward (

Lg
)

∗ maps tangent vector from Tp to Tg.p. Again it follows
immediately from this definition that a left-invariant metric has similar properties as a left-invariant vector field.
Corollary 2.7 (Properties of left-invariant metric tensor fields). On a homogeneous space G∕H with reference
element p0 a left-invariant metric tensor field G has the following properties:
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1. it is fully determined by its metric tensor G|p0 at p0,
2. ∀ℎ ∈ H, ∀v,w ∈ Tp0 (G∕H) ∶ G

|

|

|p0
(v,w) = G

|

|

|p0

((

Lℎ
)

∗ v,
(

Lℎ
)

∗w
)

.

Or in words, the metric has to be symmetric with respect to the subgroupH .
We end our theoretical preliminaries by introducing the space of positions and orientations Md .

2.3 Example: The Group SE(d) and the Homogeneous SpaceMd

Our main example and Lie group of interest is the Special Euclidean group SE(d) of the rotations and translations
of ℝd , in particular for d ∈ {2, 3}. When we take H = {0} × SO(d − 1) we obtain the space of positions and
orientations Md = SE(d)∕ ({0} × SO(d − 1)). This homogeneous space and group will enable the construction
of roto-translation equivariant networks.
As a set we identify Md with ℝd × Sd−1 and choose some reference direction a ∈ Sd−1 ⊂ ℝd as the forward
direction so that we can set the reference point of the space as p0 = (0,a). We can then see that elements ofH are
those rotations that map a to itself, i.e. rotations with the forward direction as their axis.
If we denote elements of SE(d) as translation/rotation pairs (y, R) ∈ ℝd × SO(d) then group multiplication is
given by

g1 =
(

y1, R1
)

, g2 =
(

y2, R2
)

∈ G ∶ g1g2 =
(

y1, R1
) (

y2, R2
)

=
(

y1 + R1y2, R1R2
)

, (15)
and the group action on elements p = (x,n) ∈ ℝd × Sd−1 ≡ Md is given as

g.p = (y, R) . (x,n) = (y + Rx, Rn) . (16)
Proposition 2.8 (Left-invariant Riemannian metric tensors fields onMd). The only Riemannian metric tensor fields
onMd that are left invariant with respect to SE(d) are of the form:

G
|

|

|(x,n)

(

(ẋ, ṅ) , (ẋ, ṅ)
)

= DM |ẋ ∙ n|2 +DL ‖ẋ ∧ n‖2 +DA ‖ṅ‖2 , (17)

with DM , DL, DA > 0 weighing the main, lateral and angular motion respectively and where the inner product,
outer product and norm are the standard Euclidean constructs.

Proof. It follows that to satisfy (14) at the tangent space T(x,n) of a particular (x,n) the metric tensor needs to be
symmetric with respect to rotations about n both spatially and angularly which leads to the three degrees of freedom
contained in (17) irrespective of d.

For d = 2 we represent elements ofM2 with (x, y, �) ∈ ℝ3 where x, y are the usual Cartesian coordinates and � the
angle with respect to the x-axis, the reference element is then simply denoted by (0, 0, 0). The left-invariant metric
tensors are then given by

G
|

|

|(x,y,�)

(

(

ẋ, ẏ, �̇
)

,
(

ẋ, ẏ, �̇
)

)

= DM
(

|ẋ cos �|2 + |ẏ sin �|2
)

+DL
(

|ẋ sin �|2 + |ẏ cos �|2
)

+DA|�̇|
2. (18)

While left-invariant metric tensor fields onMd are of essentially the same form and with the same three degrees of
freedom for all d ≥ 2 there is a fundamental difference between left-invariant vector fields for d = 2 and d ≥ 3.
Proposition 2.9 (Left-invariant vector fields on Md). On M2 the left-invariant vector fields are spanned by the
following basis:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A1
|

|

|(x,y,�)
= cos � )x

|

|

|(x,y,�)
+ sin � )y

|

|

|(x,y,�)
,

A2
|

|

|(x,y,�)
= − sin � )x

|

|

|(x,y,�)
+ cos � )y

|

|

|(x,y,�)
,

A3
|

|

|(x,y,�)
= )�

|

|

|(x,y,�)
.

(19)
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For d ≥ 3 the case is somewhat simplified, let )a ∈ Tp0
(

Md
)

be the tangent vector in the reference point in the
main direction a, specifically:

)af ∶= limt→0
f ((ta,a)) − f ((0,a))

t
,

then all left-invariant vector fields are spanned by the vector field:

p↦ A1
|

|

|p
∶=

(

Lgp
)

∗
)a, (20)

where gp ∈ G is chosen such that gp.p0 = p or equivalently gp ∈ Gp.

Proof. For d = 2 we have M2 ≡ SE(d) and the left-invariant vector fields on M2 are exactly the left-invariant
vector fields on SE(2) given by (19).
For d ≥ 3 we can see that (20) are the only left-invariant vector fields since for all ℎ ∈ H we have (gpℎ

)

.p0 = p
and so in order to be well-defined we must require (Lℎ

)

∗ v = v on Tp0
(

Md
), and this is true for )a (and its scalar

multiples) but not true for any other tangent vectors at Tp0
(

Md
).

3 Overall Architecture

A key ingredient in of what we call a PDE-G-CNN is the PDE layer that we detail in the next section, however to
make a complete network we need more. Specifically we need a layer that transforms the network’s input into a
format that is suitable for the PDE layers and a layer that takes the output of the PDE layers and transforms it to the
desired output format. We call this input and output transformation lifting respectively projection, this yields the
overall architecture of a PDE-G-CNN as illustrated in Fig. 4.
As our theoretical preliminaries suggest we aim to do processing on homogeneous spaces but the input and output
of the network do not necessarily live on that homogeneous space. Indeed in the case of images the data lives on
ℝ2 and not onM2 where we propose to do processing.
This necessitates the addition of lifting and projection layers to first transform the input to the desired homogeneous
space and end with transforming it back to the required output space. Of course for the entire network to be
equivariant we require these transformation layers to be equivariant as well. In this paper we focus on the design of
the PDE layers, details on appropriate equivariant lifting and projection layers in the case of SE(2) can be found
in [40, 15].
Remark 3.1 (General equivariant linear transformations between homogeneous spaces). A general way to lift
and project from one homogeneous space to another in a trainable fashion is the following. Consider two
homogeneous spaces X and Y of a Lie group G with x0 being the reference element of X, let f ∈ L2(X) and
k ∈ L1(Y ) with the following property:

∀ℎ ∈ StabG
(

x0
)

, y ∈ Y ∶ k (ℎ.y) = k(y)

then the operator T defined by

∀y ∈ Y ∶ (Tf ) (y) ∶= ∫G
k
(

g−1.y
)

f
(

g.x0
)

d�G(g) (21)

transforms f from a function on X to a function on Y in an equivariant manner . Here the kernel k is the
trainable part and �G is the Haar measure on the group.
Moreover it can be shown via the Dunford-Pettis[68] theorem that (under mild restrictions) all linear transforms
between homogeneous spaces are of this form.

Remark 3.2 (Lifting and projecting on M2). Lifting an image (function) on ℝ2 to M2 can either be performed
by a non-trainable Orientation Score Transform [16] or a trainable lift [40] in the style of Remark 3.1.
Projecting fromM2 back down toℝ2 can be performed by a simple maximum projection: let f ∶ M2 → ℝ then

(x, y)↦ max
�∈[0,2�)

f (x, y, �) (22)
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is a roto-translation equivariant projection as used in [40]. A variation on the above projection is detailed in
[15, Ch. 3.3.3].

4 Design of a PDE Layer

A PDE layer operates by taking its inputs as the initial conditions for a set of evolution equations, hence there will
be a PDE associated with each input feature. The idea is that we let each of these evolution equations work on
the inputs up to a fixed time T . Afterwards, we take these solutions at time T and take (batch normalized) linear
combinations of them to produce the outputs of the layer and as such the initial conditions for the next set of PDEs.
If we index network layers (i.e. the depth of the network) with l and denote the width (i.e. the number of features
or channels) at layer l withMl then we haveMl PDEs and takeMl+1 linear combinations of their solutions. We
divide a PDE layer into PDE units that each solve a PDE and the linear combination unit. This design is illustrated
in Fig. 1.

4.1 The PDE Unit

The PDE unit is the part of the network that has a one-to-one correspondence to a particular PDE, it interprets its
input as an initial condition (at t = 0) for an evolution PDE, and produces as output the (approximate) solution to
the PDE at a time t = T . Many choices of PDEs are possible, and the choice can vary within the network.
It is essential that we require network layers, and thereby all PDE units, to be equivariant. This has consequences
for the class of PDEs that is allowed.
The default PDE unit that we will consider in this article computes the approximate solution to the PDE

Convection Fractional diffusion Dilation/Erosion

⎧

⎪

⎨

⎪

⎩

)W
)t (p, t) = − cW (p, t) −

(

−ΔG1

)�
W (p, t) ± ‖

‖

‖

∇G2
W (p, t)‖‖

‖

2�

G2
for p ∈ G∕H, t ≥ 0,

W (p, 0) = U (p) for p ∈ G∕H.
(23)

Here, c is a left-invariant vector field on G∕H (recall (20) and our use of tangent vectors as differential operators
per Remark 2.3), � ∈ [

1∕2, 1
], G1 and G2 are left-invariant metric tensor fields on G∕H for i ∈ {1, 2}, U is the

initial condition and ΔG and ‖ ⋅ ‖G denote the Laplace-Beltrami operator and norm induced by the metric tensor
field G. As the labels indicate, the three terms have distinct effects:

• convection: moving data around,
• (fractional) diffusion: regularizing data (which relates to sub sampling by destroying data),
• dilation (+ sign) and erosion (− sign): pooling/sharpening of data.

The geometric interpretation of each of the terms in (23) is illustrated in Fig. 5 for the examples G∕H = ℝ2 and
G∕H = M2.
Since the convection vector field c and the metric tensor fields G1 and G2 are left-invariant, the PDE unit, and so
the network layer, is automatically equivariant.

Remark 4.1 (The PDE in a conventional setting). In the usual spatial setting of ℝd with � = 1 the PDE (23)
can be written as:

⎧

⎪

⎨

⎪

⎩

)W
)t = −c ⋅ ∇W − ΔW ± ‖∇W ‖

2 for p ∈ G∕H, t ≥ 0,
W (p, 0) = U (p) for p ∈ G∕H,

which is a more familiar convection/diffusion/dilation/erosion equation.
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Figure 5: Geometric interpretation of the PDE (23). In the top row we illustrate the effects of this PDEs
separate terms in a conventional 2D spatial setting (yielding translation equivariance), in the bottom
row we illustrate its effects in M2 (yielding rotation and translation equivariance). Recall (18) for the
definition of the Gi which along with the convection vector field c are what we will be training, which
in this case controls how much the regularization and max pooling is extended along each of the three
dimensions.

4.2 Training

Training the PDE unit comes down to adapting the parameters in the PDE, such as those of the convection vector
field c and the metric tensor fields Gi, in order to minimize a given loss function (the choice of which depends on
the application and we will not consider in this article). In this sense, the vector field and the metric tensors are
analogous to the weights of this layer.
Since we required the convection vector field and the metric tensor fields to be left-invariant, the parameter space
is finite-dimensional as a consequence of Cor. 2.5 and 2.7.
Remark 4.2 (Left-invariant vector fields with respect to SE(d)). In the case of the group SE(d) we recap what
left-invariant vector fields exist on its homogeneous spaces in the following table.

Homogeneous space Left-invariant vector fields of the homogeneous space
M2 all left-invariant vector fields of the group SE(d)
Md for d ≥ 3 vector fields of constant magnitude aligned to the local primary direction

(which implies all these vector fields are scalar multiples of each other)
ℝd , Sd−1 only the trivial zero vector field

For our main application on M2 each PDE unit would have the following 9 trainable parameters:
• 3 parameters to specify the convection vector field as a linear combination of (19),
• 3 parameters to specify the fractional diffusion metric tensor field G1,• and 3 parameters to specify the dilation/erosion metric tensor field G2,

11



where both metric tensor fields are of the form (18).
Surprisingly for higher dimensions Md has less trainable parameters than for d = 2. This is caused by the left-
invariant vector fields onMd for d ≥ 3 being spanned by a single basis element (20) instead of the three (19) basis
elements available for d = 2. Since the left-invariant metric tensor fields are determined by only 3 parameters
irrespective of dimensions we count a total of 7 parameters for each PDE unit for applications on Md for d ≥ 3.

5 Implementation of a PDE Unit

A PDE unit will be an N-fold repetition of a timestep-unit which is a composition of convection, diffusion, and
dilation/erosion substeps, where N is some natural number. These units all take their input as an initial condition
of a PDE, and produce as output the solution of a PDE at time t = T . The output of a previous timestep-unit is
taken as the input for the next timestep-unit, as illustrated in Fig. 1.
The convection, diffusion and dilation/erosion steps are implemented with respectively a shift, convolution, and
morphological convolution, as illustrated in the next diagram.

W (⋅, t) Shift Convolution Morphological Convolution ≈ W (⋅, t + Δt)

Trainables: c G1 G2

The composition of the substeps does not solve (23) exactly, but for small Δt, it approximates the solution by a
principle called operator splitting.
We will now discuss each of these substeps separately.

5.1 Convection

The convection step has as input a function U1 ∶ G∕H → ℝ and takes it as initial condition of the PDE

⎧

⎪

⎨

⎪

⎩

)W 1

)t (p, t) = −c(p)W
1( ⋅ , t) for p ∈ G∕H, t ≥ 0,

W 1(p, 0) = U1(p) for p ∈ G∕H.

The output of the layer is the solution of the PDE evaluated at time t = T , i.e. the output is the function p ↦
W 1(p, T ).
The solution of the PDE is found by the method of characteristics, and is given by

W (1)(p, t) =
(

Lc (t)U
1
)

(p) = U1
(

c(t)−1.p
)

, (24)

where c ∶ ℝ → G is the curve that satisfies

)
)t

(

c .p
)

(t) = c
(

c(t).p
)

, (25)

i.e. c is the curve in the group G that induces the integral curves of the left-invariant vector field c on G∕H when
acting on elements of the homogeneous space.
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5.2 Fractional Diffusion

The (fractional) diffusion step solves the PDE

⎧

⎪

⎨

⎪

⎩

)W 2

)t = −
(

−ΔG2

)�
W 2(p, t) for p ∈ G∕H, t ≥ 0,

W 2(p, 0) = U2(p) for p ∈ G∕H.
(26)

As with (fractional) diffusion on ℝn, there exists a smooth function
K�
⋅ ∶ (0,∞) × (G∕H)→ [0,∞),

called the fundamental solution of the �-diffusion equation, such that for every initial condition U2, the solution to
the PDE (23) is given by the convolution of the function U2 with the fundamental solution K�

t

W 2(p, t) =
(

K�
t ∗G U

2 ( ⋅ , t)
)

(p).

The convolution ∗G is specified by the following definition.
Definition 5.1 (Linear group convolution). LetH = StabG(p0) be compact with reference element p0 ∈ G∕H ,
let f ∈ L2 (G∕H) and k ∈ L1 (G∕H) such that:

∀ℎ ∈ H, p ∈ G∕H ∶ k (ℎ.p) = k (p) (kernel compatibility)
then we define:

(

k ∗G f
)

(p) ∶= ∫G
k
(

g−1.p
)

f
(

g.p0
)

d�G(g), (27)
where �G is the left-invariant Haar measure on the group.

In general an analytic expression for the fundamental solution K�
t requires complicated steerable filter operators

[31, Thm. 1 & 2] and for that reason we contend ourselves with more easily computable approximations. For now,
let us not elaborate on the quality of those approximations (nor on the involved asymptotics) Our approximations
will use make use of the following norm on the Lie algebra of the group G that is induces by a metric tensor field
on a homogeneous space.
Definition 5.2 (Homogeneous Lie algebra norm). LetG be a left-invariantmetric tensor field on the homogeneous
space G∕H with reference element p0 then

∀v ∈ TeG ∶ ‖v‖G ∶=
‖

‖

‖

‖

)
)t
expG (tv) .p0

|

|

|t=0

‖

‖

‖

‖G|p0

(28)

is its induced norm on the Lie algebra Te(G) where expG ∶ Te(G)→ G is the exponential map of G.
Note that due to the left invariance of G that we can pick any point p ∈ G∕H instead of p0 in the definition above
and get the same result, so there is no arbitrary choice being made.
For small enough distances from p0 this norm then approximates the metric dG of the homogeneous space as (recall
(5) for the definition of Gp)

dG
(

p0, p
)

≈ inf
g∈Gp

‖

‖

logG g‖‖G , (29)
where logG is the logarithmic map of G. We label this estimate as follows.
Definition 5.3 (Logarithmic metric estimate). Let G be a left-invariant metric tensor field on the homogeneous
space G∕H then we define

�G(p) ∶= inf
g∈Gp

‖

‖

logG g‖‖G . (30)
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We can interpret this metric estimate as finding all exponential curves in G whose actions on the homogeneous
space connect p0 (at t = 0) to p (at t = 1) and then from that set we choose the exponential curve that has the lowest
velocity according to the norm in Def. 5.2 and use its velocity as the distance estimate.
Remark 5.4 (Logarithmic metric estimate in principal homogeneous spaces). When we take a principal ho-
mogeneous space such as M2 ≡ SE(2) with a left-invariant metric tensor field the metric estimate simplifies
to

�G(g) = ‖

‖

logG g‖‖G|e ,

hence we see that this construction generalizes the logarithmic estimate, as used in [69, 70], to homogeneous
spaces other than the principal.
Remark 5.5 (Logarithmic metric estimate for M2). Using the (x, y, �) coordinates for M2 and a left-invariant
metric tensor field of the form (18) we formulate themetric estimate in terms of the following auxiliary functions
called the exponential coordinates of the first kind:

c1(x, y, �) ∶=

{

�
2

(

y + x cot �2
)

if � ≠ 0,
x if � = 0,

c2(x, y, �) ∶=

{

�
2

(

−x + y cot �2
)

if � ≠ 0,
y if � = 0,

c3(x, y, �) ∶= �.

The logarithmic metric estimate for SE(2) is then given by

�G(x, y, �) =
√

DM c1(x, y, �)2 +DL c2(x, y, �)2 +DA c3(x, y, �)2,

this estimate is illustrated in figure 6 where it is contrasted against the exact metric.

Remark 5.6 (Logarithmic metric estimate for M3). On M3 using the coordinates (x,n) ∈ ℝ3 × S2 the trans-
formation g ∈ SE(3) ≡ ℝ3 × SO(3) that minimizes (5.4) is given by g = (

x, Rn
) where Rn is the in-plane

rotation that rotates the reference direction a ∈ S2 to the desired direction n as shown in [69, Thm. 1].

Out[ ]= Out[ ]=

Figure 6: Comparing the ‘exact’ Riemannian distance (left) obtained through numerically solving the
Eikonal equation [50] versus the logarithmic metric estimate (right) on SE(2) endowed with a left-
invariant Riemannian metric tensor field (18) with DM = 1, DL = 2, DA = 1∕�.

We can see that the metric estimate �G (and consequently any function of �G) has the necessary compatibility
property to be a kernel used in convolutions per Def. 5.1.
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Lemma 5.7 (Kernel compatibility of �G). In the same setting as Def. 5.2 and 5.3 we have

∀ℎ ∈ H ∶ �G(ℎ.p) = �G(p). (31)

Proof. We apply Def. 5.2 and find

�G(p) = inf
g∈Gp

‖

‖

‖

‖

)
)t
expG

(

t logG g
)

.p0
|

|

|t=0

‖

‖

‖

‖G|p0

.

Due to the left invariance of G and the fact that ℎ.p0 = p0 the following equality holds for all ℎ ∈ H :

= inf
g∈Gp

‖

‖

‖

‖

(

Lℎ
)

∗
)
)t
expG

(

t logG g
)

.p0
|

|

|t=0

‖

‖

‖

‖G|p0

.

This can be rewritten as:

= inf
g∈Gp

‖

‖

‖

‖

)
)t
ℎ expG

(

t logG g
)

.p0
|

|

|t=0

‖

‖

‖

‖G|p0

.

Now we see that we are optimizing over a set of left-invariant curves whose actions connect p0 (at t = 0) to ℎ.p (at
t = 1) i.e. we have:

= inf
g∈Gℎ.p

‖

‖

‖

‖

)
)t
expG

(

t logG g
)

.p0
|

|

|t=0

‖

‖

‖

‖G|p0

= �G(ℎ.p).

While a general formula for the fundamental solution to the fractional diffusion problem can be obtained via the
Fourier transform on the homogeneous space G∕H [31], this usually results in difficult expressions. In most cases
we can make sufficiently good approximations using the tools that we just developed.

Proposition 5.8 (Approximation of the fractional diffusion kernel). For small enough t and � = 1 or � = 1∕2
the following estimates can be made

K1
t (p) ≈ K

1,approx
t (p) = Ct exp

(

−
�G2 (p)

2

4t

)

, (32)

K
1∕2
t (p) ≈ K

1∕2,approx
t (p) = Ct

t
(

t2 + �G2 (p)
2
)

dim(G∕H)+1
2

(33)

where Ct is the appropriate L1(G∕H)-normalization constant for a given t.

Sketch of proof. The top expression (32) for � = 1 is a consequence of the parametrix expansion, cf. [71]. For � ∈
(1∕2, 1) we do not have an analytic approximation but can obtain a general relation involving (strongly continuous)
semigroups that are generated by a fractional power of the given generator [72, Section IX.11]. In our case the
fractional power of the generator equals −(−ΔG2

)� and the general relation is given by [31, Eq. (77) and (78)].
Only for � = 1∕2 does this relation evaluate to an analytic kernel, and this indeed yields the Poisson kernel (33).

In Fig. 7 we illustrate the shape of the level sets of these kernels for different parameter settings of the involved
metric tensor fields.
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Figure 7: Shapes of the level sets of the kernels on M2 for solving fractional diffusion (K�
t ) and di-

lation/erosion (k�t ) for various values of the trainable metric tensor field parameters DM , DL and DA.This shape is essentially what is being optimized during the training process of a metric tensor field on
M2 and does not depend on the choice of �.

5.3 Dilation and Erosion

The dilation/erosion step solves the PDE

⎧

⎪

⎨

⎪

⎩

)W 3

)t = ± ‖

‖

‖

∇G3
W 3(p, t)‖‖

‖

2�

G3
for p ∈ G∕H, t ≥ 0,

W 3(p, 0) = U3(p) for p ∈ G∕H.
(34)

By a generalization of the Hopf-Lax formula [73, Ch.10.3], the solution is given by morphological convolution
W 3(p, t) = −

(

k�t □G −U
3) (p) (35)

for the + (dilation) variant and
W 3(p, t) =

(

k�t □G U
3) (p) (36)

for the − (erosion) variant, where the kernel k�t (also called the structuring element in the context of morphology)
is a proper (i.e. not everywhere equal to∞) lower semi-continuous function of the type

k�⋅ ∶ (0,∞) × (G∕H)→ ℝ ∪ {∞} . (37)
The morphological convolution □G (alternatively: the infimal convolution) is specified as follows.
Definition 5.9 (Morphological group convolution). Let f ∈ L∞ (G∕H), let k ∶ G∕H → ℝ ∪ {∞} be proper
and let p0 ∈ G∕H be the reference element of the homogeneous space, then we define:

(

k□G f
)

(p) ∶= inf
g∈G

k
(

g−1.p
)

+ f
(

g.p0
)

.
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Remark 5.10 (Grayscale morphology). Morphological convolution is related to the grayscale morphology op-
erations⊕ (dilation) and⊖ (erosion) on ℝd as follows:

f1 ⊕ f2 = −
(

−f1 □ℝd −f2
)

,

f1 ⊖ f2 = f1 □ℝd
[

x ↦ −f2 (−x)
]

,

where f1 and f2 are proper functions onℝd . Hence our use of the terms dilation and erosion, butmathematically
we will only use □G as the actual operation to be performed and avoid⊕ and⊖.

As with fractional diffusion we do not have a general analytic expression for the fundamental solution to the dila-
tion/erosion problem but we can make the following analytic estimates.
Proposition 5.11 (Approximation of the dilation/erosion kernel). The morphological convolution kernel k�t is
for small times t and � ∈ (1∕2, 1

]

well-approximated by

k�t (p) ≈ k
�,approx
t (p) =

(

2� − 1
(2�)2�∕(2�−1)

)

t−
1

2�−1 �G3 (p)
2�
2�−1 , (38)

and for � = 1∕2 by

k
1∕2
t (p) ≈ k

1∕2,approx
t (p) =

{

0 if �G3 (p) ≤ t,
∞ if �G3 (p) > t

(39)

where �G3 is the estimate of the Riemannian distance between p and p0 induced by the (trainable) left-invariant
metric tensor field G3 given by Def. 5.3.

Section 6 is dedicated to obtaining the estimates in (38) and (39) as it is a fairly involved process, in the remainder of
this section we will demonstrate how morphological convolution is able to generalize some operations commonly
used in CNNs.
To get an idea of how the kernel in (38) operates in conjunction with morphological convolution we take G =
G∕H = ℝ and see how morphological convolution evolves simple data, the kernels and results at t = 1 are shown
in Fig. 8. Observe that with � close to 1∕2 (kernel and result in red) that we obtain what amounts to max/min pooling.
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Figure 8: In the center we have kernels of the type (38) in ℝ for some � ∈ (1∕2, 1
] and t = 1, which

solves dilation/erosion. For � → 1∕2 this kernel converges to the type in Thm. 5.12, i.e. the solution is
obtained by max/min pooling. On the left we morphologically convolve a spike (in gray) with a few of
these kernels, we see that if � → 1∕2 we get max pooling, conversely we can call the case � > 1∕2 soft
max pooling. On the right we similarly erode a plateau, which for � → 1∕2 yields min pooling.

The level sets of the kernels k�t for � > 1∕2 are of the same shape as for the approximate diffusion kernels, see Fig. 7,
for � = 1∕2 these are the stencils over which we would perform min/max pooling.

5.3.1 Max Pooling as Morphological Convolution

The ordinary max pooling operation commonly found in neural networks can also be seen as a morphological
convolution with a kernel for � = 1∕2.
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Proposition 5.12 (Max pooling). Let f ∈ L∞ (G∕H), let S ⊂ G∕H be non empty and define kS ∶ G∕H →
ℝ ∪ {∞} as:

kS (p) ∶=

{

0 if p ∈ S,
∞ else.

(40)
Then:

−
(

kS □−f
)

(p) = sup
g∈G∶g−1.p∈S

f
(

g.p0
)

. (41)

We can recognize the morphological convolution as a generalized form of max pooling of the function f with
stencil S.
Proof. Filling in (40) into definition 5.9 yields:

−
(

kS □−f
)

(p) = − inf
{

inf
g∈G∶g−1.p∈S

−f
(

g.p0
)

, inf
g∈G∶g−1.p∉S

−f
(

g.p0
)

+∞
}

= − inf
g∈G∶g−1.p∈S

−f
(

g.p0
)

= sup
g∈G∶g−1.p∈S

f
(

g.p0
)

In particular cases we recover a more familiar form of max pooling as the following corollary shows.
Corollary 5.13 (Euclidean Max Pooling). Let G = G∕H = ℝn and let f ∈ C0 (ℝn) with S ⊂ ℝn compact then:

−
(

kS □ℝn −f
)

(x) = max
y∈S

f (x − y) .

The observation that max pooling is a particular limiting case of morphological convolution allows us to think of
the case with � > 1∕2 as a soft variant of max pooling, one that is better behaved under small perturbations in a
discretized context.

5.3.2 ReLUs as Morphological Convolution

Max pooling is not the only common CNN operation that can be generalized by morphological convolution as the
following theorem shows.
Proposition 5.14 (ReLU). Let f be a compactly supported continuous function on G∕H . Then dilation with the
kernel

kReLU,f (p) ∶=

⎧

⎪

⎨

⎪

⎩

0 if p = p0,
sup

y∈G∕H
f (y) else,

equates to applying a Rectified Linear Unit to the function f :

−
(

kReLU □−f
)

(p) = max
{

0, f (p)
}

.

Proof. Filling in k into the definition of morphological convolution:
−
(

kReLU □G −f
)

(p) = − inf
g∈G

kReLU(g−1.p) − f (g.p0)

= − inf
g∈G

{

inf
g−1.p=p0

−f (g.p0), inf
g−1.p≠p0

−f (g.p0) + sup
y∈G∕H

f (y)

}

= sup

{

f (p), sup
z∈G∕H∶z≠p

f (z) − sup
y∈G∕H

f (y)

}

,
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due to the continuity and compact support of f its supremum exists and moreover we have supz∈G∕H∶z≠p0 f (z) =
supy∈G∕H f (y) and thereby we obtain the required result

= max
{

f (p), 0
}

.

We conclude that morphological convolution allows us to:
• do max pooling in an equivariant manner with transformations other then translation,
• do soft max pooling that is continuous under domain transformations (illustrated in Fig. 8),
• learn the max pooling region by considering the kernel k (or rather the metric tensor field G3) as trainable,• incorporate the action of a ReLU.

6 Approximations to the Dilation and Erosion Kernels

Recall from Fig. 5 that dilation and erosion PDEs are solved by morphological convolution with a kernel (35)(36).
In this section we describe how we obtain the approximation of the morphological kernel from (38). We do this by
using a transformation that is able to relate the dilation/erosion PDE with the fractional diffusion PDE as in [47].
We first introduce this so-called Cramér-Fourier transform [46] in ℝd but since we do not know a generalization
to the group we introduce an approximate Cramér-Fourier transform via the Lie algebra. It is this approximate
transform that we will apply to the approximate diffusion kernel (32) to get an approximate morphological kernel.
This double approximation works well in practice for sufficiently small evolution times where the kernels are well
localized as we will see in Section 7 in the experiment we performed.

6.1 Cramér-Fourier Transform on Euclidean Space

On ℝd the Cramér-Fourier transform [46] is given as follows.
Definition 6.1 (Cramér-Fourier transform). For functions on ℝd that have a real-valued non-negative Fourier
transform we define the Cramér-Fourier transform as

CF ∶= F ◦ − log ◦ F, (42)
whereF denotes the Fourier transform, log denotes the point-wise logarithm andF denotes the Fenchel transform
(i.e. convex conjugation).
The reason we introduce this transformation is because it relates linear convolution to morphological convolution
in the following manner (see [46, Thm.1] for details and proof).
Lemma 6.2 (Cramér-Fourier convolution theorem). Onℝd the Cramér-Fourier transform relates convolution and
morphological convolution in the following manner: let f1 and f2 have real-valued non-negative Fourier trans-
forms then

CF

[

f1 ∗ℝd f2
]

= CF

[

f1
]

□ℝd CF

[

f2
]

. (43)

We can see how this comes about as the Fourier transform turns a convolution into a multiplication, the logarithm
turns the multiplication into an addition and finally the Fenchel transform turns the addition into a morphological
convolution.
The second relevant property of the Cramér-Fourier transform is that it relates fractional diffusion with erosion as
follows.
Lemma 6.3. Let f ∶ ℝd → ℝ be differentiable with compact support and a real-valued non-negative Fourier
transform then for � ∈

[

1∕2, 1
]

:

CF

[

− (−Δ)� f
]

= − ‖

‖

‖

∇
(

CFf
)

‖

‖

‖

2�
. (44)
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Again see [46, Thm. 2] for details and proof.
These equalities allow us to relate the fractional diffusion system in (26) to the dilation/erosion system in (34) and
use the approximate solution we have for the first system to construct an approximate solution to the latter system.
Assuming that in fact we are working on ℝd and we have a solutionW 2 ∶ ℝd ×ℝ+ → ℝ to the system (26) of the
formW 2(⋅, t) = K�
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Now choose U2 = C−1
F

[

U3
] and let W 3 = CF

[

K�
t
]

□U3 then we see that W 3 solves the erosion version of the
system (34) by performing a morphological convolution with the initial condition U3 using the kernel CF

[
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t
].

The solution to the dilation version of (34) now follows from the last expression with a few extra steps:
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Where we see that lettingW 3 = −
(

CF

[

K�
t
]

□−U3
) solves the dilation PDE.

Next, we generalize this transform to homogeneous spaces in an approximate manner so that we can estimate the
solution to the erosion/dilation PDE on homogeneous spaces the same way.

6.2 Local Approximation of the Cramér-Fourier Transform on Homogeneous Spaces

The Cramér-Fourier transform requires a function on ℝd , or at least a d-dimensional vector space that we can then
naturally identify with ℝd . On a homogeneous space we can use the Lie algebra of its group as that vector space
and use the exponential and logarithmic maps to translate between the homogeneous space and the group, this leads
to an approximate Cramér-Fourier transform.
Definition 6.4 (Approximate Cramér-Fourier transform). For functions on G∕H that have the property that the
following Fourier transform

F
[

v ↦ f
(

expG v.p0
)] (45)

is real-valued and non-negative for all v ∈ TeG, we define the approximate Cramér-Fourier transform as
C
approx
F

f (p) ∶= inf
g∈Gp

CF

[

v ↦ f
(

expG v.p0
)] (

logG g
)

, (46)

where we recall Gp from (5).
Note that above we naturally identified the n dimensional vector space Te(G) (i.e. the Lie algebra of G) with ℝn.
Nevertheless, the reader should keep in mind that v ∈ Te(G) (and not in ℝn).
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Remark 6.5 (Approximate Cramér-Fourier transform onM2). A function f onM2 expressed in terms of coor-
dinates (x, y, �) is first transformed to a function f1 on the Lie algebra expressed in coordinates relative to the
basis (19) (i.e. the exponential coordinates of the first kind) as:

f1
(

c1, c2, c3
)

∶=

⎧

⎪

⎨

⎪

⎩

f
(

c1 sin c3−c2
(

1−cos c3
)

c3 , c
1(1−cos c3

)

+c2 sin c3

c3 , c3
)

if c3 ≠ 0,

f
(

c1, c2, 0
) if c3 = 0.

(47)

This function now lives on ℝ3 and we can apply the Cramér-Fourier transform on it to obtain the function f2:
f2 ∶= CFf1, (48)

the function f2 again lives onℝ3 and via the mapping (c1, c2, c3) ↦ c1A1|e+c2A2|e+c3A3|e on the Lie alge-bra. We can use the exponential mapping to bring this function back toM2 again to complete the approximate
transform:

(

C
approx
F

f
)

(x, y, �) =

⎧

⎪

⎨

⎪

⎩

f2
(

�
2

(

y + x cot �2
)

, �2
(

−x + y cot �2
)

, �
)

if � ≠ 0,

f2 (x, y, 0) if � = 0.
(49)

6.3 Dilation/Erosion Kernel Approximation

Now that we have developed the approximate Cramér-Fourier transform on homogeneous spaces we can obtain an
approximation of the morphological kernel k�t .
Proposition 6.6 (Dilation/erosion kernel estimate). Let � ∈ (1∕2, 1] and let G be a left-invariant metric tensor field
on G∕H , then:

k�t (p) ≈ k
�,approx
t (p) =

(

C
approx
F

K�,approx
t

)

(p) = 2� − 1
(2�)2�∕(2�−1)

�G(p)2�∕(2�−1)

t1∕(2�−1)
. (50)

For � → 1∕2 this converges to:

k
1∕2,approx
t (p) =

{

0 if �G(p) ≤ t,
∞ elsewhere.

(51)

These estimates hold for all p ∈ G∕H for sufficiently small t > 0.

Proof of the Formula. We leave analyzing how good the approximation is for later work (following ideas in [70])
and for now only derive the analytic formula for what we take to be a good approximation to use practice. From
the construction of K�,approx

t we have that

F
[

v ↦ K�,approx
t

(

expG v.p0
)]

= e−t‖⋅‖
2�
G ,

which is real valued and positive, taking − log yields
v ↦ t ‖v‖2�

G
.

Applying the Fenchel transformF to this (where we use the Riesz representationsw of the duals ! ∈ T ∗e G instead
of the duals themselves)

F
[

t ‖⋅‖2�
G

]

(w) = sup
v∈TeG

{

(w, v)G − t ‖v‖2�G
}

.

21



Obviously to maximize this v must be chosen aligned withw (assume ≠ 0) and pointing in the same direction, i.e.
v = �w∕ ‖w‖

2
G
for some � > 0:

= sup
�>0
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w, �w∕ ‖w‖

2
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)
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}
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‖w‖
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G

}

.

Now we consider two cases.
Case 1 : � = 1∕2

F
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}
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�
(

1 − t
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=
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0 if ‖w‖G ≤ t,
∞ if ‖w‖G > t.

Next taking the mapping to the homogeneous space we get
(

C
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which proves (51).
Case 2 : � ∈ (1∕2, 1]

Seeing that the objective function is concave we apply the first order test to find the supremum is reached for

� =
‖w‖

2�
2�−1
G

(2�t)
1

2�−1

,

after substituting and simplifying this yields
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‖w‖
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,

finally taking the mapping to the homogeneous space just like in the first case we confirm (50).

7 Proof of Concept

To verify that our PDE-based framework is a sensible one to adopt for CNN applications we perform an experiment
to see if the incorporation of morphological convolution in G-CNNs can improve performance. For this experiment
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we will take a G-CNN as used in retinal vessel segmentation [40] and augment it with a dilation sub-layer. We
compare the performance of this augmented network against the non-augmented and a conventional spatial CNN
of comparable size making the experiment consisting of the following three networks.

• Spatial CNN, consisting of
– 6 convolution layers,
– 34580 parameters.

• SE(2) CNN, consisting of
– lifting layer, 4 group convolution layers, projection layer,
– 33916 parameters.

• Augmented SE(2) CNN, consisting of
– lifting layer, 4 group convolution layers, dilation layer, projection layer,
– 33916 parameters.

These networks are trained repeatedly on the same dataset for the same amount of epochs after which we evaluate
their performance. For details on the networks and the training setup see [15, §3.4]. We compare the performance
of these networks via the cross-entropy loss function and the area under ROC curve, the results are summarized in
Fig. 9 and show a marked improvement from the included PDE-based morphological convolution layer.

Figure 9: Comparing the performance of our proof-of-concept network against a conventional CNN and
a G-CNN. We measure the area under the ROC curve between the networks output versus the ground
truth (left) and the cross entropy loss function (right).

To see how well our dilation kernel approximation (Prop. 5.11) holds up in a practical application we compare
its discretization as used in the augmented SE(2) CNN (with parameters DM = 1, DL = 2, DA = �−1) against
one based on the Eikonal solution. The comparison can be seen in Fig. 10 from which we may conclude that our
approximation is sufficiently accurate for use in this type of application.

8 Concluding Remarks

In this paper we have developed a general mathematical framework of equivariant CNNs based on geometric PDEs.
PDEs are well studied mathematical objects and we have shown how common CNN operations like max pooling
and ReLUs naturally arise from them. These insights not only allow for the geometric interpretation of CNNs and
related architectures but open up new avenues for the study and development of these types of networks.
In more detail the main conclusions and results of this manuscript in chronological order are as follows.
We have given the tools in the setting of homogeneous spaces, namely left invariant vector and tensor fields as the
fundamental building blocks for equivariant PDEs (see for example Prop. 2.9).
We characterized how input data can be transformed from its given domain to a homogeneous space in an equivariant

23



manner (by (21) for linear transforms) and how it can be projected back to its domain.
We have explained how the PDE unit solves the PDE (23) by means of linear and morphological convolutions
with geometrically meaningful kernels, recall Fig. 5. We greatly reduced the amount of trainable parameters by
respecting the equivariance constraint.
We have given tangible analytical approximations of the fundamental solutions for fractional diffusion and fractional
dilation/erosion in Prop. 5.8 respectively Prop. 5.11. Furthermore we have shown the strength of morphological
convolutions in G-CNNs as they allow for soft max-pooling, recall Fig. 8 over geodesic balls in the homogeneous
space. Even the ReLU operator can be expressed as a morphological convolution (and can potentially be replaced
by it).
We also provided an intrinsic relation between the (approximate) linear and morphological fundamental solutions
by way of an approximate Cramér-Fourier transform, recall Prop. 6.6.
With a modest proof-of-concept experiment we have verified that PDE-G-CNNs can considerably improve perfor-
mance over G-CNNs in the context of automatic vessel segmentation. As shown in [40] G-CNNs have significant
advantages over conventional CNNs and we expect that our PDE framework can improve on these results in other
applications as well.
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