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Abstract We present a PDE-based framework that gener-
alizes Group equivariant Convolutional Neural Networks
(G-CNNs). In this framework, a network layer is seen as a
set of PDE-solvers where geometrically meaningful PDE-
coefficients become the layer’s trainable weights. Formulating
our PDEs on homogeneous spaces allows these networks to
be designed with built-in symmetries such as rotation in
addition to the standard translation equivariance of CNNs.
Having all the desired symmetries included in the de-

sign obviates the need to include them by means of costly
techniques such as data augmentation. We will discuss our
PDE-based G-CNNs (PDE-G-CNNs) in a general homoge-
neous space setting while also going into the specifics of our
primary case of interest: roto-translation equivariance.
We solve the PDE of interest by a combination of lin-

ear group convolutions and non-linear morphological group
convolutions with analytic kernel approximations that we
underpin with formal theorems. Our kernel approximations
allow for fast GPU-implementation of the PDE-solvers, we
release our implementation with this article. Just like for
linear convolution a morphological convolution is specified
by a kernel that we train in our PDE-G-CNNs. In PDE-G-
CNNs we do not use non-linearities such as max/min-pooling
and ReLUs as they are already subsumed by morphological
convolutions.
We present a set of experiments to demonstrate the

strength of the proposed PDE-G-CNNs in increasing the
performance of deep learning based imaging applications
with far fewer parameters than traditional CNNs.
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1 Introduction

In this work we introduce PDE-based Group CNNs. The key
idea is to replace the typical trifecta of convolution, pooling
and ReLUs found in CNNs with a Hamilton-Jacobi type
evolution PDE, or more accurately a solver for a Hamilton-
Jacobi type PDE. This substitution is illustrated in Fig. 1
where we retain (channel-wise) affine combinations as the
means of composing feature maps.
The PDE we propose to use in this setting comes from

the geometric image analysis world [1–11]. It was chosen
based on the fact that it exhibits similar behaviour on images
as traditional CNNs do through convolution, pooling and
ReLUs. Additionally it can be formulated on Lie groups to
yield equivariant processing, which makes our PDE approach
compatible with Group CNNs [12–24]. Finally an approx-
imate solver for our PDE can be efficiently implemented
on modern highly parallel hardware, making the choice a
practical one as well.
Our solver uses the operator splitting method to solve

the PDE in a sequence of steps, each step corresponding to
a term of the PDE. The sequence of steps for our PDE is
illustrated in Fig. 2. The morphological convolutions that are
used to solve for the non-linear terms of the PDE are a key
aspect of our design. Normally, morphological convolutions
are considered on R𝑑 [25, 26], but when extended to Lie
groups such as 𝑆𝐸 (𝑑) they have many benefits in applications
(e.g. crossing-preserving flow [27] or tracking [28,29]). Us-
ing morphological convolutions allows our network to have
trainable non-linearities in lieu of the fixed non-linearities in
(G-)CNNs.
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2 Bart M.N. Smets et al.

The theoretical contribution of this paper consists of
providing good analytical approximations to the kernels that
go in the linear and morphological convolutions that solve our
PDE. On R𝑛 the formulation of these kernels is reasonably
straightforward, but in order to achieve group equivariance
we need to generalize them on homogeneous spaces.

Instead of training kernel weights our goal is training the
coefficients of the PDE. The coefficients of our PDE have
the benefit of yielding geometrically meaningful parameters
from a image analysis point of view. Additionally we will
need (much) less PDE parameters than kernel weights to
achieve a given level of performance in image segmentation
and classification tasks; arguably the greatest benefit of our
approach.

Fig. 1 In a PDE-based CNN we replace the traditional convolution,
pooling and ReLU operations by a PDE solver. The inputs of a given
layer serve as initial conditions for a set of evolution PDEs, the outputs
consist of affine combinations of the solutions of those PDEs at a fixed
point in time. The parameters of the PDE become the trainable weights
(alongside the affine parameters) over which we optimize.

Fig. 2 Our Hamilton-Jacobi type PDE of choice contains a convection,
diffusion, dilation and erosion term (CDDE for short). Through oper-
ator splitting we solve for these terms separately by using resampling
(for convection), linear convolution (for diffusion) and morphological
convolution (for dilation and erosion).

1.1 Structure of the Article

The structure of the article is as follows. We first place our
work in its mathematical and deep learning context in Sec-
tion 2. Then we introduce the needed theoretical preliminaries
from Lie group theory in Section 3 where we also define the
space of positions and orientationsM𝑑 that will allow us to
construct roto-translation equivariant networks.
In Section 4 we give the overall architecture of a PDE-

G-CNN and the ancillary tools that are needed to support a
PDE-G-CNN. We propose an equivariant PDE that models
commonly used operations in CNNs.
In Section 5 we detail how our PDE of interest can be

solved using a process called operator splitting. Additionally,
we give tangible approximations to the fundamental solutions
(kernels) of the PDEs that are both easy to compute and
sufficiently accurate for practical applications. We use them
extensively in the PDE-G-CNNs GPU-implementations in
PyTorch that can be downloaded from the GIT-repository:
https://gitlab.com/bsmetsjr/lietorch.
Section 6 is dedicated to showing how common CNN

operations such as convolution, max-pooling, ReLUs and
skip connections can be interpreted in terms of PDEs.
We end our paper with some experiments showing the

strength of PDE-G-CNNs in Section 7, and concluding re-
marks in Section 8.
The framework we propose covers transformations and

CNNs on homogeneous spaces in general and as such we
develop the theory in an abstract fashion. To maintain a bridge
with practical applications we give details throughout the
article on what form the abstractions take explicitly in the
case of roto-translation equivariant networks acting onM𝑑 ,
specifically in 2D (i.e. 𝑑 = 2).

2 Context

As this article touches on disparate fields of study we use this
section to discuss context and highlight some closely related
work.

2.1 Drawing Inspiration from PDE-based Image Analysis

Since the Partial Differential Equations that we use are well-
known in the context of geometric image analysis [1–11], the
layers also get an interpretation in terms of classical image-
processing operators. This allows intuition and techniques
from geometric PDE-based image analysis to be carried over
to neural networks.
In geometric PDE-based image processing it can be

beneficial to include mean curvature or other geometric
flows [30–33] as regularization and our framework provides a
natural way for such flows to be included into neural networks.

https://gitlab.com/bsmetsjr/lietorch
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In the PDE-layer from Fig. 2 we only mention diffusion as
a means of regularization, but mean curvature flow could
easily be integrated by replacing the diffusion sub-layer with a
mean curvature flow sub-layer. This would require replacing
the linear convolution for diffusion by a median filtering
approximation of mean curvature flow.

2.2 The Need for Lifting Images

In geometric image analysis it is often useful to lift images
from a 2D picture to a 3D orientation score as in Fig. 3 and
do further processing on the orientation scores [34]. A typical
image processing task in which such a lift is beneficial is
that of the segmentation of blood vessels in a medical image.
Algorithms based on processing the 2D picture directly,
usually fail around points where two blood vessels cross, but
algorithms that lift the image to an orientation score manage
to decouple the blood vessels with different orientations as is
illustrated in the bottom row of Fig. 3.
To be able to endow image-processing neural networks

with the added capabilities (such as decoupling orientations
and guaranteeing equivariance) that result from lifting data
to an extended domain, we develop our theory for the more
general CNNs defined on homogeneous spaces, rather than
just the prevalent CNNs defined on Euclidean space. One
can then choose which homogeneous space to use based on
the needs of one’s application (such as needing to decouple
orientations). A homogeneous space is, given subgroup 𝐻
of a group 𝐺, the manifold of left cosets, denoted by 𝐺/𝐻.
In the above image-analysis example, the group 𝐺 would be
the special Euclidean group 𝐺 = 𝑆𝐸 (𝑑), the subgroup 𝐻
would be the stabilizer subgroup of a fixed reference axis,
and the corresponding homogeneous space 𝐺/𝐻 would be
the space of positions and orientations M𝑑 , which is the
lowest dimensional homogeneous space able to decouple
orientations. By considering convolutional neural networks
on homogeneous spaces such as M𝑑 these networks have
access to the same benefits of decoupling structures with
different orientations as was highly beneficial for geometric
image processing [35–49].

Remark 1 (Generality of the architecture) Although not con-
sidered here, for other Lie groups applications (e.g. frequency
scores [50], velocity scores, scale-orientation scores [51]) the
same structure applies, therefore we keep our theory in the
general setting of homogeneous spaces 𝐺/𝐻.

2.3 The Need for Equivariance

We require the layers of our network to be equivariant: a
transformation of the input should lead to a corresponding

Fig. 3 Illustrating the process of lifting and projecting, in this case the
advantage of lifting an image from R2 to the 2D space of positions and
orientations M2 derives from the disentanglement of the lines at the
crossings.

transformation of the output, in other words: first transform-
ing the input and then applying the network or first applying
the network and then transforming the output should yield
the same result. A particular example, in which the output
transformation is trivial (i.e. the identity transformation), is
that of invariance: in many classification tasks, such as the
recognition of objects in pictures, an apple should still be
recognized as an apple even if it is shifted or otherwise trans-
formed in the picture as illustrated in Fig. 4. By guaranteeing
equivariance of the network, the amount of data necessary or
the need for data augmentation are reduced as the required
symmetries are intrinsic to the network and need not be
trained.

Fig. 4 Spatial CNNs, as used for image classification for example, are
translation equivariant but not necessarily equivariant with respect to
rotation, scaling and other transformations as the tags of the differently
transformed apples images suggest. Building a G-CNN with the appro-
priately chosen group confers the network with all the equivariances
appropriate for the chosen application. Our PDE-based approach is
compatible with the group CNN approach and so can confer the same
symmetries.
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Fig. 5 Illustrating the overall architecture of a PDE-G-CNN (example: retinal vessel segmentation). An input image is lifted to a homogeneous space
from which point on it can be fed through subsequent PDE layers (each PDE layer follow the structure of Fig.2) that replace the convolution layers in
conventional CNNs. Finally the result is projected back to the desired output space.

2.4 Related Work

G-CNNs After the introduction of G-CNNs by Cohen &
Welling [12] in the field of machine and deep learning, G-
CNNs became popular. This resulted in many articles on
showing the benefits of G-CNNs over classical spatial CNNs.
These works can be roughly categorised as

– discrete G-CNNs [12–16],
– regular continuous G-CNNs [18–20,28, 52, 53],
– and steerable continuous G-CNNs [21–24,54] that rely
on Fourier transforms on homogeneous spaces [48, 55].

Both regular and steerable G-CNNs naturally arise from
linear mappings between functions on homogeneous spaces
that are placed under equivariance constraints [21,23,52,54].
Regular G-CNNs explicitly extend the domain and lift feature
maps to a larger homogeneous space of a group, whereas
steerable CNNs extend the co-domain by generating fiber
bundles in which a steerable feature vector is assigned to each
position in the base domain. Although steerable operators
have clear benefits in terms of computational efficiency and
accuracy [56, 57], working with steerable representations
puts constraints on non-linear activations within the networks
which limits representation power of G-CNNs [54]. Like
regular G-CNNs, the proposed PDE-G-CNNs do not suffer
from this. In our proposed PDE-G-CNN framework it is
essential that we adopt the domain-extension viewpoint, as
this allows to naturally and transparently construct scale
space PDEs via left-invariant vector fields [58]. In general
this viewpoint entails that the domain of images is extended
from the space of positions only, to a higher dimensional
homogeneous space, and originates from coherent state theory
[59], orientation score theory [34], cortical perception models
[37], G-CNNs [12,19], and rigid-body motion scattering [60].
The proposed PDE-G-CNNs form a new, unique class of

equivariant neural networks, and we show in section 6 how
regular continuous G-CNNs arise as a special case of our
PDE-G-CNNs.

Probabilistic-CNNs Our geometric PDEs relate to 𝛼-stable
Lévy processes [48] and cost-processes akin to [25], but then
on M𝑑 rather than R𝑑 . This relates to probabilistic equiv-
ariant numerical neural networks [61] that use anisotropic
convection-diffusions on R𝑑 .
In contrast to these networks, the PDE-G-CNNs that we

propose allow for simultaneous spatial and angular diffusion
onM𝑑 . Furthermore we include nonlinear Bellman processes
[25] for max pooling over Riemannian balls.

KerCNNs An approach to introducing horizontal connectiv-
ity in CNNs that does not require a Lie group structure was
proposed byMontobbio et al. [62,63] in the form ofKerCNNs.
In this biologically inspired metric model a diffusion process
is used to achieve intra-layer connectivity.
While our approach does require a Lie group structure it is

not restricted to diffusion and also includes dilation/erosion.

Neural Networks and Differential Equations The connec-
tion between neural networks and differential equations be-
came widely known in 2017, when Weinan E [64] explicitly
explained the connection between neural networks and dy-
namical systems especially in the context of the ultradeep
ResNet [65]. This point of view was further expanded by Lu
et al. [66], showing how many ultradeep neural networks can
be viewed as discretizations of ordinary differential equations.
The somewhat opposite point of view was taken by Chen
et al. [67], who introduced a new type of neural network
which no longer has discrete layers, them being replaced by a
field parameterized by a continuous time variable. Weinan E
also indicated a relationship between CNNs and PDEs, or
rather with evolution equations involving a nonlocal operator.
Implicitly, the connection between neural networks and dif-
ferential equations was also explored by the early works of
Chen et al. [68] who learn parameters in a reaction-diffusion
equation. This connection between neural networks and PDEs
was then made explicit and more extensive by Long et al. who
made it possible to learn a much wider class of PDEs [69]
with their PDE-Net.
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More recent work in this direction includes integrating
equivariant partial differential operators in steerable CNNs
[70], drawing a strong analogy between deep learning and
physics.
A useful aspect of the connection between neural networks

and differential equations is the observation that the stability
of the differential equation can give into the stability and gen-
eralization ability of the neural network [71]. Moreover, there
are intruiging analogies with numerical PDE-approximations
and specific network archtectures (e.g. ResNets), as can be
seen in the comprehensive overview article by Alt et al. [72].
The main contribution of our work in the field of PDE-

related neural networks, is that we implement and analyze
geometric PDEs on homogeneous spaces, to obtain general
group equivariant PDE-based CNNs whose implementations
just require linear and morphological convolutions with new
analytic approximations of scale space kernels.

3 Equivariance: Groups & Homogeneous Spaces

We want to design the PDE-G-CNN, and its layers, in such a
way that they are equivariant. Equivariance essentially means
that one can either transform the input and then feed it through
the network, or first feed it through the network and then
transform the output, and both give the same result. We will
give a precise definition after introducing general notation.

3.1 The General Case

A layer in a neural network (or indeed the whole network) can
be viewed as an operator from a space of functions defined
on a space 𝑋 to a space of functions defined on a space 𝑌 . It
may be helpful to think of these function spaces as spaces of
images.
We assume that the possible transformations form a

connected Lie group 𝐺. Think for instance of a group of
translations which shift the domain into different directions.
We further assume that the Lie group 𝐺 acts smoothly on
both 𝑋 and 𝑌 , which means that there are smooth maps
𝜌𝑋 : 𝐺 × 𝑋 → 𝑋 and 𝜌𝑌 : 𝐺 × 𝑌 → 𝑌 such that for all
𝑔, ℎ ∈ 𝐺,

𝜌𝑋 (𝑔ℎ, 𝑥) = 𝜌𝑋 (𝑔, 𝜌𝑋 (ℎ, 𝑥))

and

𝜌𝑌 (𝑔ℎ, 𝑥) = 𝜌𝑌 (𝑔, 𝜌𝑌 (ℎ, 𝑥)).

Additionally we will assume that the group 𝐺 acts tran-
sitively on the spaces, meaning that for any two elements of
the space there exists a transformation in 𝐺 that maps one to
the other. This has as the consequence that 𝑋 and 𝑌 can be
seen as homogeneous spaces [73]. In particular, this means

that after selecting a reference element 𝑥0 ∈ 𝑋 we can make
the following isomorphism:

(𝑋, 𝐺, 𝑥0) � 𝐺/Stab𝐺 (𝑥0) (1)

using the mapping

𝑥 ↦→ {𝑔 ∈ 𝐺 | 𝜌𝑋 (𝑔, 𝑥0) = 𝑥} , (2)

which is a bĳection due to transitivity and the fact that
Stab𝐺 (𝑥0) is a closed subgroup of 𝐺. Because of this we will
represent a homogeneous space as the quotient𝐺/𝐻 for some
choice of closed subgroup 𝐻 since all homogeneous spaces
are isomorphic to such a quotient by the above construction.
In this article we will restrict ourselves to those homoge-

neous spaces that correspond to those quotients 𝐺/𝐻 where
the subgroup 𝐻 is compact and connected. Restricting our-
selves to compact and connected subgroups simplifies many
constructions and still covers several interesting cases such
as the rigid body motion groups 𝑆𝐸 (𝑑).
The elements of the quotient𝐺/𝐻 consist of subsets of𝐺

which we will denote by the letter 𝑝, these subsets are know
as left cosets of 𝐻 since every one of them consists of the set
𝑝 = 𝑔𝐻 for some 𝑔 ∈ 𝐺, the left cosets are a partition of 𝐺
under the equivalence relation

𝑔1 ∼ 𝑔2 ⇐⇒ 𝑔−11 𝑔2 ∈ 𝐻.

Under this notation the group 𝐺 consists of the disjoint
union

𝐺 =
∐

𝑝∈𝐺/𝐻
𝑝. (3)

The left coset that is associated with the reference element
𝑥0 ∈ 𝑋 is 𝐻 and for that reason we also alias it by 𝑝0 := 𝐻
when we want to think of it as an atomic entity rather than a
set in its own right.
We will denote quotient map from 𝐺 to 𝐺/𝐻 with 𝜋:

𝜋(𝑔) := 𝑔𝑝0 := 𝑔𝐻. (4)

Remark 2 (Principal homogeneous space) Observe that by
choosing 𝐻 = {𝑒} we get 𝐺/𝐻 ≡ 𝐺, i.e. the Lie group is
a homogeneous space of itself. This is called the principal
homogeneous space. In that case the group action is equivalent
to the group composition.

The action on a homogeneous space 𝐺/𝐻 induces an
action on spaces of functions on𝐺/𝐻. A neural network layer
is itself an operator (from functions on𝐺/𝐻𝑋 to functions on
𝐺/𝐻𝑌 ), and we require the operator to be equivariant with
respect to the actions on these function spaces.
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Definition 1 (Equivariance) Let 𝐺 be a Lie group with
homogeneous spaces 𝑋 and 𝑌 . Let Φ be an operator from
functions (of some function class) on 𝑋 to functions on 𝑌 ,
then we say that Φ is equivariant with respect to 𝐺 if for all
functions 𝑓 (of that class) we have that:

∀𝑔 ∈ 𝐺, 𝑦 ∈ 𝑌 :
(Φ 𝑓 ) (𝜌𝑌 (𝑔, 𝑦)) =

(
Φ [𝑥 ↦→ 𝑓 (𝜌𝑋 (𝑔, 𝑥))]

)
(𝑦).

(5)

Indeed, this definition expresses that one can either first apply
the transformation 𝑔 and then apply Φ, or first apply Φ and
then apply the transformation 𝑔, and the result is the same.
We will denote the group action/left-multiplication by an

element 𝑔 ∈ 𝐺 by the operator 𝐿𝑔 : 𝐺/𝐻 → 𝐺/𝐻 given by

𝐿𝑔𝑝 := 𝑔𝑝 for all 𝑝 ∈ 𝐺/𝐻. (6)

In addition, we denote the left-regular representation of 𝐺 on
functions 𝑓 defined on 𝐺/𝐻 by L𝑔 defined by(
L𝑔 𝑓

)
(𝑝) := 𝑓

(
𝑔−1𝑝

)
. (7)

With this notation, condition (5) on our neural network oper-
ator Φ can be rewritten as: for all 𝑔 ∈ 𝐺,

L𝑔 ◦ Φ = Φ ◦ L𝑔, (8)

or in words: the neural network commutes with transforma-
tions.

3.2 Vector and Metric Tensor Fields

The particular operators that we will base our framework on
are vector and tensor fields, if these basic building blocks
are equivariant then our processing will be equivariant. We
explain what left invariance means for these objects next.
For 𝑔 ∈ 𝐺 and 𝑝 ∈ 𝐺/𝐻, the pushforward(

𝐿𝑔
)
∗ : 𝑇𝑝 (𝐺/𝐻) → 𝑇𝑔𝑝 (𝐺/𝐻)

of the group action 𝐿𝑔 is defined by the condition that for all
smooth functions 𝑓 on 𝐺/𝐻 and all 𝒗 ∈ 𝑇𝑝 (𝐺/𝐻) we have
that( (
𝐿𝑔

)
∗ 𝒗

)
𝑓 := 𝒗

(
𝑓 ◦ 𝐿𝑔

)
. (9)

Remark 3 (Tangent vectors as differential operators) Other
then the usual geometric interpretation of tangent vectors as
being the velocity vectors ¤𝛾(𝑡) tangent to some differentiable
curve 𝛾 : R → 𝐺/𝐻 we will simultaneously use them as
differential operators acting on functions as we did in (9).
This algebraic viewpoint defines the action of the tangent
vector ¤𝛾(𝑡) on a differentiable function 𝑓 as

¤𝛾(𝑡) 𝑓 := 𝜕

𝜕𝑠
𝑓 (𝛾(𝑠))

��
𝑠=𝑡
.

In the flat setting of 𝐺 =
(
R𝑑 , +

)
, where the tangent spaces

are isomorphic to the base manifold R𝑑 , when we have a
tangent vector 𝒄 ∈ R𝑑 its application to a function is the
familiar directional derivative:

𝒄 𝑓 = 𝒄 · ∇ 𝑓 = d 𝑓 (𝒄).

See [74, §2.1.1] for details on this double interpretation.

Vector fields that have the special property that the push
forward (𝐿𝑔)∗ maps them to themselves in the sense that

∀𝑔 ∈ 𝐺,∀𝑝 ∈ 𝐺/𝐻 : 𝒗 (𝑝) 𝑓 = 𝒗 (𝑔𝑝)
[
L𝑔 𝑓

]
, (10)

for all differentiable function 𝑓 and where 𝒗 : 𝑝 ↦→ 𝑇𝑝 (𝐺/𝐻)
is a vector field, are referred to as 𝐺-invariant.

Definition 2 (𝐺-invariant vector field on a homogeneous
space) A vector field 𝒗 on 𝐺/𝐻 is invariant with respect to
𝐺 if it satisfies

∀𝑔 ∈ 𝐺, ∀𝑝 ∈ 𝐺/𝐻 : 𝒗 (𝑔𝑝) =
(
𝐿𝑔

)
∗ 𝒗 (𝑝) . (11)

It is straightforward to check that (10) and (11) are equivalent
and that these imply the following.

Corollary 1 (Properties of left-invariant vector fields) On
a homogeneous space 𝐺/𝐻 the left-invariant vector fields
have the following properties:

1. they are fully determined by their value 𝒗(𝐻) in 𝐻,

2. ∀ℎ ∈ 𝐻, ∀𝒗 ∈ 𝑇𝐻 (𝐺/𝐻) : (𝐿ℎ)∗ 𝒗 = 𝒗.

We also introduce 𝐺-invariant metric tensor fields.

Definition 3 (𝐺-invariant metric tensor field on 𝐺/𝐻) A
(0, 2)-tensor field G on 𝐺/𝐻 is 𝐺-invariant if and only if

∀𝑔 ∈ 𝐺, ∀𝑝 ∈ 𝐺/𝐻, ∀𝒗, 𝒘 ∈ 𝑇𝑝 (𝐺/𝐻) :

G
��
𝑝
(𝒗, 𝒘) = G

��
𝑔𝑝

( (
𝐿𝑔

)
∗ 𝒗,

(
𝐿𝑔

)
∗ 𝒘

)
. (12)

Recall that 𝐿𝑔𝑝 := 𝑔𝑝 and so the push-forward
(
𝐿𝑔

)
∗ maps

tangent vector from 𝑇𝑝 to 𝑇𝑔𝑝 . Again it follows immediately
from this definition that a 𝐺-invariant metric tensor field has
similar properties as a 𝐺-invariant vector field.

Corollary 2 (Properties of𝐺-invariant metric tensor fields)
On a homogeneous space 𝐺/𝐻, a 𝐺-invariant metric tensor
field G has the following properties:

1. it is fully determined by its metric tensor G|𝑝0 at 𝑝0 = 𝐻,
2. ∀ℎ ∈ 𝐻, ∀𝒗, 𝒘 ∈ 𝑇𝑝0 (𝐺/𝐻) :

G
��
𝑝0

(𝒗, 𝒘) = G
��
𝑝0

((𝐿ℎ)∗ 𝒗, (𝐿ℎ)∗ 𝒘).

Or in words, the metric (tensor) has to be symmetric with
respect to the subgroup 𝐻.
A metric tensor field yields a Riemannian metric in the

usual manner.
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Definition 4 (Metric on 𝐺/𝐻) Let 𝑝1, 𝑝2 ∈ 𝐺/𝐻 then:

𝑑G (𝑝1, 𝑝2) := 𝑑𝐺/𝐻,G (𝑝1, 𝑝2) :=

inf
𝛽∈Lip( [0,1], 𝐺/𝐻 )
𝛽 (0)=𝑝1 , 𝛽 (1)=𝑝2

∫ 1

0

√︃
G|𝛽 (𝑡)

( ¤𝛽(𝑡), ¤𝛽(𝑡)) 𝑑𝑡.
As metrics and their smoothness play a role in our con-

struction we need to take into account where that smoothness
fails.

Definition 5 The cut locus cut(𝑝) ⊂ 𝐺/𝐻 or cut(𝑔) ⊂ 𝐺

is the set of points respectively group elements where the
geodesics starting at 𝑝 respectively 𝑔 are no longer minimiz-
ing.

As long as we stay away from the cut locus the infimum from
Def. 4 gives a unique geodesic and a well defined metric.
Being derived from a 𝐺-invariant tensor field gives the

metric 𝑑G the same symmetries.

Proposition 1 (𝐺-invariance of the metric on 𝐺/𝐻) Let
𝑝1, 𝑝2 ∈ 𝐺/𝐻 away from each other’s cut locus, then we
have:

∀𝑔 ∈ 𝐺 : 𝑑G (𝑝1, 𝑝2) = 𝑑G (𝑔𝑝1, 𝑔𝑝2).

Proof We observe that we can make a bĳection from the
set of Lipschitz curves between 𝑝1 and 𝑝2 and between 𝑔𝑝1
and 𝑔𝑝2 simply by left multiplication by 𝑔 one way and 𝑔−1
the other way. Due to (12) multiplying a curve with a group
element preserves its length, hence if 𝛾 : [0, 1] → 𝐺/𝐻 is
the geodesic from 𝑝1 to 𝑝2 then 𝑔𝛾 is the geodesic from 𝑔𝑝1
to 𝑔𝑝2, both having the same length. ut

A metric tensor field on the homogeneous space has a
natural counterpart on the group.

Definition 6 (Pseudometric tensor field on𝐺)A𝐺-invariant
metric tensor field G on 𝐺/𝐻 induces a (pullback) pseudo-
metric tensor field G̃ on 𝐺 that is left-invariant:

G̃ := 𝜋∗G,

where 𝜋∗ is the pullback of the quotient map 𝜋 from (4). This
is equivalent to saying that for all 𝒗, 𝒘 ∈ 𝑇𝑔𝐺:

G̃
��
𝑔
(𝒗, 𝒘) := G

��
𝜋 (𝑔) (𝜋∗𝒗, 𝜋∗𝒘) ,

where 𝜋∗ is the pushforward of 𝜋.

This tensor field G̃ is left-invariant by virtue of G being
𝐺-invariant. It is also degenerate in the direction of 𝐻 and so
yields a seminorm on 𝑇𝐺.

Definition 7 (Seminorm on 𝑇𝐺) Let 𝒗 ∈ 𝑇𝑔𝐺 then the
metric tensor fieldG on𝐺/𝐻 induces the following seminorm:

‖𝒗‖ G̃ :=
√︃
G̃ |𝑔 (𝒗, 𝒗) :=

√︃
G|𝑔𝑝0 (𝜋∗𝒗, 𝜋∗𝒗). (13)

In the same fashion we have an induced pseudometric on
𝐺 from the pseudometric tensor field on 𝐺.

Definition 8 (Pseudometric on 𝐺) Let 𝑔1, 𝑔2 ∈ 𝐺 then we
define:

𝑑 G̃ (𝑔1, 𝑔2) := 𝑑𝐺, G̃ (𝑔1, 𝑔2) :=

inf
𝛾∈Lip( [0,1], 𝐺)
𝛾 (0)=𝑔1 , 𝛾 (1)=𝑔2

∫ 1

0

√︃
G̃ |𝛾 (𝑡) ( ¤𝛾(𝑡), ¤𝛾(𝑡)) 𝑑𝑡. (14)

By requiring𝐺 and𝐻 to be connectedwe get the following
strong correspondence between the metric structure on the
homogeneous space and the pseudometric structure on the
group.

Lemma 1 Let 𝑔1, 𝑔2 ∈ 𝐺 so that 𝜋(𝑔2) is away from the cut
locus of 𝜋(𝑔1), then:

𝑑 G̃ (𝑔1, 𝑔2) = 𝑑G (𝜋(𝑔1), 𝜋(𝑔2)).

Moreover if 𝛾 is a minimizing geodesic in the group connecting
𝑔1 with 𝑔2 then 𝜋 ◦ 𝛾 is the unique minimizing geodesic in the
homogeneous space that connects 𝜋(𝑔1) with 𝜋(𝑔2).

Proof Let 𝛾 ∈ Lip( [0, 1], 𝐺) be a minimizing geodesic con-
necting 𝛾(0) = 𝑔1with 𝛾(1) = 𝑔2 and let 𝛽 ∈ 𝐿𝑖𝑝( [0, 1], 𝐺/𝐻)
be the unique minimizing geodesic connecting 𝛽(0) = 𝜋(𝑔1)
with 𝛽(1) = 𝜋(𝑔2). Because of the pseudometric on 𝐺, min-
imizing geodesics are not unique, i.e. 𝛾 is not unique. On
𝐺/𝐻 we have a full metric and so staying away from the cut
locus means 𝛽 is both unique and minimizing.
Denote the length functionals with:

Len𝐺 (𝛾) :=
∫ 1

0

√︃
G̃ |𝛾 (𝑡) ( ¤𝛾(𝑡), ¤𝛾(𝑡)) d𝑡,

Len𝐺/𝐻 (𝛽) :=
∫ 1

0

√︃
G|𝛽 (𝑡)

( ¤𝛽(𝑡), ¤𝛽(𝑡)) d𝑡.

Observe that by construction of the pseudometric tensor field
G̃ on 𝐺 we have: Len𝐺 (𝛾) = Len𝐺/𝐻 (𝜋 ◦ 𝛾).
Now we assume 𝜋 ◦ 𝛾 ≠ 𝛽. Then since 𝛽 is the unique

geodesic we have

Len𝐺/𝐻 (𝛽) < Len𝐺/𝐻 (𝜋 ◦ 𝛾) = Len𝐺 (𝛾).

But thenwe canfind some 𝛾lift ∈ Lip( [0, 1], 𝐺) that is a preim-
age of 𝛽, i.e. 𝜋 ◦ 𝛾lift = 𝛽. The potential problem is that while
𝛾lift (0) ∈ 𝜋(𝑔1) and 𝛾lift (1) ∈ 𝜋(𝑔2), 𝛾lift does not necessarily
connect 𝑔1 to 𝑔2. But since the coset 𝜋(𝑔1) is connected we
can find a curve wholly contained in it that connects 𝑔1 with
𝛾lift (0), call this curve 𝛾head ∈ Lip( [0, 1], 𝜋(𝑔1)). Similarly
we can find a 𝛾tail ∈ Lip( [0, 1], 𝜋(𝑔2)) that connects 𝛾lift (1)
to 𝑔2. Both these curves have zero length since 𝜋maps them to
a single point on 𝐺/𝐻, i.e. Len𝐺 (𝛾head) = Len𝐺 (𝛾tail) = 0.
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Now we can compose these three curves:

𝛾new (𝑡) :=


𝛾head (3𝑡) if 𝑡 ∈ [0, 1/3],
𝛾lift (3𝑡 − 1) if 𝑡 ∈ [1/3, 2/3],
𝛾tail (3𝑡 − 2) if 𝑡 ∈ [2/3, 1] .

This new curve is again in Lip( [0, 1], 𝐺) and connects 𝑔1
with 𝑔2, but also:

Len𝐺 (𝛾new) = Len𝐺 (𝛾lift) = Len𝐺/𝐻 (𝛽) < Len𝐺 (𝛾),

which is a contradiction since 𝛾 is a minimizing geodesic
between 𝑔1 and 𝑔2. We conclude 𝜋 ◦ 𝛾 = 𝛽 and thereby:

𝑑 G̃ (𝑔1, 𝑔2) = Len𝐺 (𝛾) = Len𝐺/𝐻 (𝛽) = 𝑑G (𝜋(𝑔1), 𝜋(𝑔2)).

ut

This result allows us to more easily translate results from
Lie groups to homogeneous spaces.
We end our theoretical preliminaries by introducing the

space of positions and orientationsM𝑑 .

3.3 Example: The Group 𝑆𝐸 (𝑑) and the Homogeneous
SpaceM𝑑

Our main example and Lie group of interest is the Special
Euclidean group 𝑆𝐸 (𝑑) of the rotations and translations ofR𝑑 ,
in particular for 𝑑 ∈ {2, 3}.Whenwe take𝐻 = {0}×𝑆𝑂 (𝑑−1)
we obtain the space of positions and orientations

M𝑑 = 𝑆𝐸 (𝑑)/({0} × 𝑆𝑂 (𝑑 − 1)) . (15)

This homogeneous space and group will enable the construc-
tion of roto-translation equivariant networks.
As a set we identifyM𝑑 with R𝑑 × 𝑆𝑑−1 and choose some

reference direction 𝒂 ∈ 𝑆𝑑−1 ⊂ R𝑑 as the forward direction so
that we can set the reference point of the space as 𝑝0 = (0, 𝒂).
We can then see that elements of 𝐻 are those rotations that
map 𝒂 to itself, i.e. rotations with the forward direction as
their axis.
If we denote elements of 𝑆𝐸 (𝑑) as translation/rotation

pairs (𝒚, 𝑅) ∈ R𝑑 × 𝑆𝑂 (𝑑) then group multiplication is given
by

𝑔1 = (𝒚1, 𝑅1) , 𝑔2 = (𝒚2, 𝑅2) ∈ 𝐺 :

𝑔1𝑔2 = (𝒚1, 𝑅1) (𝒚2, 𝑅2) = (𝒚1 + 𝑅1𝒚2, 𝑅1𝑅2) ,

and the group action on elements 𝑝 = (𝒙, 𝒏) ∈ R𝑑 × 𝑆𝑑−1 ≡
M𝑑 is given as

𝑔𝑝 = (𝒚, 𝑅) (𝒙, 𝒏) = (𝒚 + 𝑅𝒙, 𝑅𝒏) . (16)

What the G-invariant vector field and metric tensor fields
look like onM𝑑 is different for 𝑑 = 2 than for 𝑑 > 2. We first
look at 𝑑 > 2.

Proposition 2 Let 𝑑 > 2 and let 𝜕𝒂 ∈ 𝑇𝑝0 (M𝑑) be the
tangent vector in the reference point in the main direction 𝒂,
specifically:

𝜕𝒂 𝑓 := lim
𝑡→0

𝑓 ((𝑡𝒂, 𝒂)) − 𝑓 ((0, 𝒂))
𝑡

,

then all 𝑆𝐸 (𝑑)-invariant vector fields are spanned by the
vector field:

𝑝 ↦→ A1
��
𝑝
:=

(
𝐿𝑔𝑝

)
∗
𝜕𝒂, (17)

with 𝑔𝑝 ∈ 𝑝.

Proof For 𝑑 > 3 we can see that (17) are the only left-
invariant vector fields since for all ℎ ∈ 𝐻 we have

(
𝑔𝑝ℎ

)
𝑝0 =

𝑝 and so in order to be well-definedwemust require (𝐿ℎ)∗ 𝒗 =

𝒗 on 𝑇𝑝0 (M𝑑), and this is true for 𝜕𝒂 (and its scalar multiples)
but not true for any other tangent vectors at 𝑇𝑝0 (M𝑑). ut

Proposition 3 For 𝑑 > 2 the only Riemannian metric tensor
fields onM𝑑 that are 𝑆𝐸 (𝑑)-invariant are of the form:

G
��
(𝒙,𝒏)

(
( ¤𝒙, ¤𝒏) , ( ¤𝒙, ¤𝒏)

)
=

𝑤𝑀 | ¤𝒙 • 𝒏|2 + 𝑤𝐿 ‖ ¤𝒙 ∧ 𝒏‖2 + 𝑤𝐴 ‖ ¤𝒏‖2 , (18)

with 𝑤𝑀 , 𝑤𝐿 , 𝑤𝐴 > 0 weighing the main, lateral and angu-
lar motion respectively and where the inner product, outer
product and norm are the standard Euclidean constructs.

Proof It follows that to satisfy the second condition of Cor. 2
at the tangent space 𝑇(𝒙,𝒏) of a particular (𝒙, 𝒏) the metric
tensor needs to be symmetric with respect to rotations about
𝒏 both spatially and angularly (i.e. we require isotropy in
all angular and lateral directions) which leads to the three
degrees of freedom contained in (18) irrespective of 𝑑. ut

For 𝑑 = 2we represent elements ofM2 with (𝑥, 𝑦, \) ∈ R3
where 𝑥, 𝑦 are the usual Cartesian coordinates and \ the angle
with respect to the 𝑥-axis, the reference element is then simply
denoted by (0, 0, 0).
It may be counter-intuitive but decreasing the number

of dimensions to 2 gives more freedom to the 𝐺-invariant
vector and metric tensor fields compared to 𝑑 > 2. This is
a consequence of the subgroup 𝐻 being trivial and so the
symmetry conditions from Cor. 1 and 2 also become trivial.
The 𝑆𝐸 (2)-invariant vector fields are given as follows.

Proposition 4 OnM2 the 𝑆𝐸 (2)-invariant vector fields are
spanned by the following basis:

A1
��
(𝑥,𝑦, \) = cos \ 𝜕𝑥

��
(𝑥,𝑦, \) + sin \ 𝜕𝑦

��
(𝑥,𝑦, \) ,

A2
��
(𝑥,𝑦, \) = − sin \ 𝜕𝑥

��
(𝑥,𝑦, \) + cos \ 𝜕𝑦

��
(𝑥,𝑦, \) ,

A3
��
(𝑥,𝑦, \) = 𝜕\

��
(𝑥,𝑦, \) .

(19)
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Proof For 𝑑 = 2 we have M2 ≡ 𝑆𝐸 (𝑑) and the group
invariant vector fields on M2 are exactly the left-invariant
vector fields on 𝑆𝐸 (2) given by (19). ut

In a similar manner 𝑆𝐸 (2)-invariant metric tensors are
then given as follows.

Proposition 5 On M2 the 𝑆𝐸 (2)-invariant metric tensor
fields are given by:

G
��
(𝑥,𝑦, \) (𝒗, 𝒘) = G

��
(0,0,0)

((
𝐿−1(𝑥,𝑦, \)

)
𝒗,
(
𝐿−1(𝑥,𝑦, \)

)
𝒘
)
,

for any choice of inner product G
��
(0,0,0) at 𝑒.

Proof Since 𝑆𝐸 (2) ≡ M2 the𝐺-invariant metric tensor fields
are again exactly the left-invariant metric tensor fields. ut

This gives 𝑆𝐸 (2)-invariant metric tensor fields 6 degrees
of freedom and hence 6 trainable parameters onM2. In our
experiments so far we have restricted ourselves to those
metric tensors that are diagonal with respect to the frame
from Prop. 4. A diagonal metric tensor would have just 3
degrees of freedom and have the same general form as (18),
specifically:

G
��
(𝑥,𝑦, \)

( (
¤𝑥, ¤𝑦, ¤\

)
,
(
¤𝑥, ¤𝑦, ¤\

) )
=

𝑤𝑀

(
| ¤𝑥 cos \ |2 + | ¤𝑦 sin \ |2

)
+ 𝑤𝐿

(
| ¤𝑥 sin \ |2 + | ¤𝑦 cos \ |2

)
+ 𝑤𝐴 | ¤\ |2.

(20)

We will expand into non-diagonal metric tensors (to also
include training of curvature) in future work.

4 Architecture

4.1 Lifting & Projecting

The key ingredient of what we call a PDE-G-CNN is the
PDE layer that we detail in the next section, however to make
a complete network we need more. Specifically we need a
layer that transforms the network’s input into a format that is
suitable for the PDE layers and a layer that takes the output
of the PDE layers and transforms it to the desired output
format. We call this input and output transformation lifting
respectively projection, this yields the overall architecture of
a PDE-G-CNN as illustrated in Fig. 5.
As our theoretical preliminaries suggest we aim to do

processing on homogeneous spaces but the input and output
of the network do not necessarily live on that homogeneous
space. Indeed in the case of images the data lives on R2 and
not onM2 where we propose to do processing.
This necessitates the addition of lifting and projection

layers to first transform the input to the desired homogeneous

space and end with transforming it back to the required output
space. Of course for the entire network to be equivariant we
require these transformation layers to be equivariant as well.
In this paper we focus on the design of the PDE layers, details
on appropriate equivariant lifting and projection layers in the
case of 𝑆𝐸 (2) can be found in [19, 75].

Remark 4 (General equivariant linear transformations be-
tween homogeneous spaces) A general way to lift and project
from one homogeneous space to another in a trainable fash-
ion is the following. Consider two homogeneous spaces
𝐺/𝐻1 and 𝐺/𝐻2 of a Lie group 𝐺, let 𝑓 ∈ 𝐿2 (𝐺/𝐻1) and
𝑘 ∈ 𝐿1 (𝐺/𝐻2) with the following property:

∀ℎ ∈ 𝐻1, 𝑞 ∈ 𝐺/𝐻2 : 𝑘 (ℎ𝑞) = 𝑘 (𝑞),

where 𝐻1 is compact. then the operator T defined by

∀𝑞 ∈ 𝐺/𝐻2 : (T 𝑓 ) (𝑞) :=
∫
𝐺

𝑘

(
𝑔−1𝑞

)
𝑓 (𝑔𝐻1) d`𝐺 (𝑔)

(21)

transforms 𝑓 from a function on𝐺/𝐻1 to a function on𝐺/𝐻2
in an equivariant manner. Here the kernel 𝑘 is the trainable
part and `𝐺 is the left-invariant Haar measure on the group.
Moreover it can be shown via the Dunford-Pettis [76]

theorem that (under mild restrictions) all linear transforms
between homogeneous spaces are of this form.

Remark 5 (Lifting and projecting onM2) Lifting an image
(function) on R2 to M2 can either be performed by a non-
trainable Orientation Score Transform [34] or a trainable
lift [19] in the style of Remark 4.
Projecting fromM2 back down to R2 can be performed

by a simple maximum projection: let 𝑓 : M2 → R then

(𝑥, 𝑦) ↦→ max
\ ∈[0,2𝜋)

𝑓 (𝑥, 𝑦, \) (22)

is a roto-translation equivariant projection as used in [19].
A variation on the above projection is detailed in [75, Ch.
3.3.3].

4.2 PDE Layer

A PDE layer operates by taking its inputs as the initial
conditions for a set of evolution equations, hence there will be
a PDE associated with each input feature. The idea is that we
let each of these evolution equations work on the inputs up to
a fixed time 𝑇 . Afterwards, we take these solutions at time 𝑇
and take affine combinations (really batch normalized linear
combinations in practice) of them to produce the outputs of
the layer and as such the initial conditions for the next set of
PDEs.
If we index network layers (i.e. the depth of the network)

with ℓ and denote the width (i.e. the number of features or
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channels) at layer ℓ with 𝑀ℓ then we have 𝑀ℓ PDEs and take
𝑀ℓ+1 linear combinations of their solutions. We divide a PDE
layer into the PDE solvers that each apply the PDE evolution
to their respective input channel and the affine combination
unit. This design is illustrated in Fig. 1, but let us formalize it.
Let

(
𝑈ℓ,𝑐

)𝑀ℓ

𝑐=1 be the inputs of the ℓ-th layer (i.e. some
functions on𝐺/𝐻), let 𝑎ℓ𝑖 𝑗 and 𝑏ℓ𝑖 ∈ R be the coefficients of
the affine transforms for 𝑖 = 1 . . . 𝑀ℓ+1 and 𝑗 = 1 . . . 𝑀ℓ . Let
each PDE be parametrized by a set of parameters \ℓ 𝑗 . Then
the action of a PDE layer is described as:

𝑈ℓ+1,𝑖 =
𝑀ℓ∑︁
𝑗=1
𝑎ℓ𝑖 𝑗Φ𝑇 ,\ℓ 𝑗

(
𝑈ℓ 𝑗

)
+ 𝑏ℓ𝑖 , (23)

where Φ𝑇 ,\ is the evolution operator of the PDE at time
𝑇 ≥ 0 and parameter set \. We define the operator Φ𝑡 , \ so
that (𝑝, 𝑡) ↦→

(
Φ𝑡 , \𝑈

)
(𝑝) satisfies the Hamilton-Jacobi type

PDE that we introduce in just a moment. In this layer formula
the parameters 𝑎ℓ𝑖 𝑗 , 𝑏ℓ𝑖 and \ℓ 𝑗 are the trainable weights, but
the evolution time 𝑇 we keep fixed.
It is essential that we require network layers, and thereby

all PDE units, to be equivariant. This has consequences for
the class of PDEs that is allowed.
The PDE solver that we will consider in this article,

illustrated in Fig. 2, computes the approximate solution to
the PDE

𝜕𝑊

𝜕𝑡
(𝑝, 𝑡) = − 𝒄𝑊 (𝑝, 𝑡) (convection)

−
(
−ΔG1

)𝛼
𝑊 (𝑝, 𝑡) (diffusion)

+
∇G+

2
𝑊 (𝑝, 𝑡)

2𝛼
G+
2

(dilation)

−
∇G−

2
𝑊 (𝑝, 𝑡)

2𝛼
G−
2

(erosion)

for 𝑝 ∈ 𝐺/𝐻, 𝑡 ≥ 0,
𝑊 (𝑝, 0) = 𝑈 (𝑝) for 𝑝 ∈ 𝐺/𝐻.

(24)

Here, 𝒄 is a 𝐺-invariant vector field on 𝐺/𝐻 (recall (17)
and our use of tangent vectors as differential operators per
Remark 3), 𝛼 ∈ [1/2, 1], G1 and G±

2 are 𝐺-invariant metric
tensor fields on 𝐺/𝐻,𝑈 is the initial condition and ΔG and
‖ · ‖G denote the Laplace-Beltrami operator and norm induced
by the metric tensor field G. As the labels indicate, the four
terms have distinct effects:

– convection: moving data around,
– (fractional) diffusion: regularizing data (which relates to
sub sampling by destroying data),

– dilation: pooling of data,
– erosion: sharpening of data.

Which is alsowhywe refer to a layer using this PDEas aCDDE
layer. Summarized the parameters of this PDE are given by
\ =

(
𝒄, G1, G+

2 , G
−
2
)
. The geometric interpretation of each

of the terms in (24) is illustrated in Fig. 6 for 𝐺 = 𝐺/𝐻 = R2

and in Fig. 7 for 𝐺/𝐻 = M2.
Since the convection vector field 𝒄 and the metric tensor

fields G1 and G±
2 are 𝐺-invariant, the PDE unit, and so the

network layer, is automatically equivariant.

4.3 Training

Training the PDE layer comes down to adapting the parameters
in the PDEs in order to minimize a given loss function (the
choice of which depends on the application and we will not
consider in this article). In this sense, the vector field and the
metric tensors are analogous to the weights of this layer.
Since we required the convection vector field and the

metric tensor fields to be 𝐺-invariant, the parameter space
is finite-dimensional as a consequence of Cor. 1 and 2 if we
restrict ourselves to Riemannian metric tensor fields.
For our main application on M2 each PDE unit would

have the following 12 trainable parameters:

– 3 parameters to specify the convection vector field as a
linear combination of (19),

– 3 parameters to specify the fractional diffusion metric
tensor field G1,

– and 3 parameters each to specify the dilation and erosion
metric tensor fields G±

2 ,

where the metric tensor fields are of the form (20) that are
diagonal with respect to the frame from Prop. 4.
Surprisingly for higher dimensionsM𝑑 has less trainable

parameters than for 𝑑 = 2. This is caused by the 𝑆𝐸 (𝑑)-
invariant vector fields on M𝑑 for 𝑑 ≥ 3 being spanned by
a single basis element (17) instead of the three (19) basis
elements available for 𝑑 = 2. Since the left-invariant metric
tensor fields are determined by only 3 parameters irrespective
of dimensions we count a total of 7 parameters for each PDE
unit for applications onM𝑑 for 𝑑 ≥ 3.
In our own experiments we always use some form of

stochastic gradient descent (usually ADAM) with a small
amount of 𝐿2 regularization applied uniformly over all the
parameters. Similarly we stick to a single learning rate for all
the parameters. Given that in our setting different parameters
have distinct effects treating all of them the same is likely
far from optimal, however we leave that topic for future
investigation.

5 PDE Solver

Our PDE solver will consist of an iteration of timestep-units,
each of which is a composition of convection, diffusion,
dilation and erosion substeps. These units all take their input
as an initial condition of a PDE, and produce as output the
solution of a PDE at time 𝑡 = 𝑇 .
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Fig. 6 Geometric inter-
pretation of the terms of
the PDE (24) illustrated
for R2. In this setting the
𝐺-invariant vector field
𝒄 is the constant vector
field given by two trans-
lation parameters. For the
other terms we use Rie-
mannian metric tensors
parametrized by a posi-
tive definite 2 × 2 matrix
in the standard basis. The
kernels used in the diffu-
sion, dilation and erosion
terms are functions of the
distance-map induced by
the metric tensors.

Fig. 7 Geometric inter-
pretation of the terms of
the PDE (24) illustrated
forM2. In this setting the
𝐺-invariant vector field
𝒄 is a left-invariant vec-
tor field given by two
translation and one rota-
tion parameter. For the
other terms we use Rie-
mannian metric tensors
parametrized by a posi-
tive definite 3 × 3 matrix
in the left-invariant basis
(the matrix does not need
to be diagonal but we keep
that for future work). The
kernels used in the diffu-
sion, dilation and erosion
terms are functions of the
distance-map induced by
the metric tensors and are
visualized by partial plots
of their level sets.

The convection, diffusion and dilation/erosion steps are
implemented with respectively a shifted resample, linear con-
volution, and two morphological convolutions, as illustrated
in Fig. 8. The composition of the substeps does not solve (24)
exactly, but for small Δ𝑡, it approximates the solution by a
principle called operator splitting.

We will now discuss each of these substeps separately.

5.1 Convection

The convection step has as input a function𝑈1 : 𝐺/𝐻 → R
and takes it as initial condition of the PDE
𝜕𝑊 1

𝜕𝑡
(𝑝, 𝑡) = −𝒄(𝑝)𝑊1 ( · , 𝑡) for 𝑝 ∈ 𝐺/𝐻, 𝑡 ≥ 0,

𝑊1 (𝑝, 0) = 𝑈1 (𝑝) for 𝑝 ∈ 𝐺/𝐻.
(25)

The output of the layer is the solution of the PDE evaluated
at time 𝑡 = 𝑇 , i.e. the output is the function 𝑝 ↦→ 𝑊1 (𝑝, 𝑇).
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𝑊 ( ·, 𝑡) Trainables:

Resample 𝒄

Linear convolution G1

Morphological convolution G+
2

Morphological convolution G−
2

≈𝑊 ( ·, 𝑡 + Δ𝑡)

Fig. 8 Evolving the PDE through operator splitting, each operation
corresponds to a term of (24).

Proposition 6 (Convection solution) The solution of the
convection PDE is found by the method of characteristics,
and is given by

𝑊1 (𝑝, 𝑡) =
(
L𝑔−1𝑝 𝑈

1
) (
𝛾𝒄 (𝑡)−1𝑝0

)
= 𝑈1

(
𝑔𝑝 𝛾𝒄 (𝑡)−1𝑝0

)
, (26)

where 𝑔𝑝 ∈ 𝑝 (i.e. 𝑔𝑝𝑝0 = 𝑝) and 𝛾𝒄 : R → 𝐺 is the
exponential curve that satisfies 𝛾𝒄 (0) = 𝑒 and

𝜕

𝜕𝑡
(𝛾𝒄 (𝑡)𝑝) (𝑡) = 𝒄 (𝛾𝒄 (𝑡)𝑝) , (27)

i.e. 𝛾𝒄 is the exponential curve in the group 𝐺 that induces
the integral curves of the 𝐺-invariant vector field 𝒄 on 𝐺/𝐻
when acting on elements of the homogeneous space.

Note that this exponential curve existing is a consequence of
the vector field 𝒄 being 𝐺-invariant, such exponential curves
do not exist for general convection vector fields.

Proof

𝜕𝑊1

𝜕𝑡
(𝑝, 𝑡) = lim

ℎ→0

𝑊1 (𝑝, 𝑡 + ℎ) −𝑊1 (𝑝, 𝑡)
ℎ

= lim
ℎ→0

𝑈1
(
𝑔𝑝 𝛾𝒄 (𝑡 + ℎ)−1𝑝0

)
−𝑈1

(
𝑔𝑝 𝛾𝒄 (𝑡)−1𝑝0

)
ℎ

= lim
ℎ→0

𝑈1
(
𝑔𝑝 𝛾𝒄 (𝑡)−1 𝛾𝒄 (ℎ)−1𝑝0

)
−𝑈1

(
𝑔𝑝 𝛾𝒄 (𝑡)−1𝑝0

)
ℎ

,

now let �̄� := L𝛾𝒄 (𝑡) 𝑔−1𝑝 𝑈
1, then

= lim
ℎ→0

�̄�
(
𝛾𝒄 (ℎ)−1𝑝0

)
− �̄� (𝑝0)

ℎ

= −𝒄(𝑝0) �̄�

= −
(
𝐿𝑔𝑝

)
∗
𝒄(𝑝0) L𝑔𝑝�̄�

due to the 𝐺-invariance of 𝒄 this yields

= −𝒄(𝑝) L𝑔𝑝 L𝛾𝒄 (𝑡) 𝑔−1𝑝 𝑈
1

= −𝒄(𝑝)
[
𝑝 ↦→ 𝑈1

(
𝑔𝑝𝛾𝒄 (𝑡)−1𝑔−1𝑝 𝑝

)]
= −𝒄(𝑝)

[
𝑝 ↦→ 𝑈1

(
𝑔𝑝𝛾𝒄 (𝑡)−1𝑝0

)]
= −𝒄(𝑝)𝑊1 (·, 𝑡).

ut

Numerically equation (26) is implemented as a resam-
pling operation with interpolation to account for the off-grid
coordinates.

5.2 Fractional Diffusion

The (fractional) diffusion step solves the PDE
𝜕𝑊 2

𝜕𝑡
= −

(
−ΔG1

)𝛼
𝑊2 (𝑝, 𝑡) for 𝑝 ∈ 𝐺/𝐻, 𝑡 ≥ 0,

𝑊2 (𝑝, 0) = 𝑈2 (𝑝) for 𝑝 ∈ 𝐺/𝐻.
(28)

As with (fractional) diffusion on R𝑛, there exists a smooth
function

𝐾𝛼· : (0,∞) × (𝐺/𝐻) → [0,∞),

called the fundamental solution of the 𝛼-diffusion equation,
such that for every initial condition 𝑈2, the solution to the
PDE (28) is given by the convolution of the function𝑈2 with
the fundamental solution 𝐾𝛼𝑡 :

𝑊2 (𝑝, 𝑡) =
(
𝐾𝛼𝑡 ∗𝐺/𝐻 𝑈

2
)
(𝑝). (29)

The convolution ∗𝐺/𝐻 on a homogeneous space 𝐺/𝐻 is
specified by the following definition.

Definition 9 (Linear group convolution) Let 𝑝0 = 𝐻 be
compact, let 𝑓 ∈ 𝐿2 (𝐺/𝐻) and 𝑘 ∈ 𝐿1 (𝐺/𝐻) such that:

∀ℎ ∈ 𝐻, 𝑝 ∈ 𝐺/𝐻 : 𝑘 (ℎ𝑝) = 𝑘 (𝑝) (kernel compatibility)

then we define:(
𝑘 ∗𝐺/𝐻 𝑓

)
(𝑝) := 1

`𝐻 (𝐻)

∫
𝐺

𝑘

(
𝑔−1𝑝

)
𝑓 (𝑔𝑝0) d`𝐺 (𝑔),

(30)

where `𝐻 and `𝐺 are the left-invariant Haar measures (de-
termined up to scalar-multiplication) on 𝐻 respectively 𝐺.

Remark 6 In the remainder of this article we refer the to the
left-invariant Haar measure on 𝐺 as ‘the Haar measure on 𝐺’
as right-invariant Haar measures on 𝐺 do not play a role in
our framework.
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Remark 7 Compactness of 𝐻 is crucial as otherwise the
integral in the righthand side of (30) does not converge. To
this end we note that one can always decompose (by Weil’s
integral formula [77, Lem.2.1]) the Haar measure `𝐺 on
the group as a product of a measure on the quotient 𝐺/𝐻
times the measure on the subgroup 𝐻. As Haar-measures are
determined up to a constant we take the following convention:
we normalize the Haar-measure `𝐺 such that

`𝐺

(
𝜋−1 (𝐴)

)
= `𝐻 (𝐻) `G (𝐴) , ∀𝐴 ⊂ 𝐺/𝐻, (31)

where `G is the Riemannian measure induced by G and `𝐻
is a choice of Haar measure on 𝐻. Thereby (31) boils down
to Weil’s integration formula:

`𝐻 (𝐻)
∫
𝐺/𝐻

𝑓 (𝑝) d`G (𝑝) =
∫
𝐺

𝑓 (𝑔𝐻) d`𝐺 (𝑔) (32)

whenever 𝑓 is measurable. Since 𝐻 is compact we can indeed
normalize the Haar measure `𝐻 so that `𝐻 (𝐻) = 1.

In general an exact analytic expression for the fundamental
solution 𝐾𝛼𝑡 requires complicated steerable filter operators
[48, Thm. 1 & 2] and for that reason we contend ourselves
with more easily computable approximations. For now let us
construct our approximations and address their quality and
the involved asymptotics later.

Remark 8 In the approximations we will make use of logar-
itmic map as the inverse of the exponential map in the Lie
group. Locally, such inversion can always be done by the
inverse function theorem. Globally, we need assumptions:
we shall assume that the exponential map is surjective1 and
that the Lie group is connected with a surjective exponential
map that is a diffeomorphism between some 𝑉 ⊂ 𝑇𝑒 (𝐺) and
𝐺. Then we define the logarithmic map log𝐺 : 𝐺 → 𝑉 by
exp𝐺 ◦ log𝐺 = id𝐺 and log𝐺 ◦ exp𝐺

��
𝑉
= id𝑉 .

For the moment, for simplicity, we assume 𝑉 = 𝑇𝑒 (𝐺) in
the general setting. We address the cases2 where one has
𝑉 ⊂ 𝑇𝑒 (𝐺) with 𝑉 ≠ 𝑇𝑒 (𝐺) later.
The idea is that instead of basing our kernels on the metric

𝑑G (which is hard to calculate [78]) we approximate it using
the seminorm from Def. 7 (which is easy to calculate). We
can use this seminorm on elements of the homogeneous space
by using the group’s logarithmic map log𝐺 . We can take the
group logarithm of all the group elements that constitute a
particular equivalence class of 𝐺/𝐻 and then pick the group
element with the lowest seminorm:

𝑑G (𝑝0, 𝑝) ≈ inf
𝑔∈𝑝

log𝐺 𝑔G̃ . (33)

Henceforth, we write this estimate as 𝑑G (𝑝0, 𝑝) ≈ 𝜌G (𝑝)
relying on the following definition.

1 For example the case if 𝐺 = R𝑑 and 𝐺 = 𝑆𝐸 (𝑑) or if 𝐺 is a
connected compact Lie group such as 𝐺 = 𝑆𝑂 (𝑑)

2 In our primary case of interest 𝐺 = 𝑆𝐸 (2) one has: we have
𝑉 = {∑3𝑘=1 𝑐𝑘𝐴𝑘 | 𝑐3 ∈ [−𝜋, 𝜋) }.

Definition 10 (Logarithmic metric estimate) Let G be a
𝐺-invariant metric tensor field on the homogeneous space
𝐺/𝐻 then we define

𝜌G (𝑝) := inf
𝑔∈𝑝

log𝐺 𝑔G̃
:= inf

𝑔∈𝑝

√︃
G
(
𝜋∗ log𝐺 𝑔, 𝜋∗ log𝐺 𝑔

)
,

(34)

where 𝜋∗ is the push-forward of the projection map 𝜋 given
by (4).
We can interpret this metric estimate as finding all expo-

nential curves in 𝐺 whose actions on the homogeneous space
connect 𝑝0 (at 𝑡 = 0) to 𝑝 (at 𝑡 = 1) and then from that set
we choose the exponential curve that has the lowest constant
velocity according to the seminorm in Def. 7 and use that
velocity as the distance estimate.
Summarizing, Def. 10 and Eq. (33), can be intuitively

reformulated as: ‘instead of the length of the geodesic con-
necting two points of 𝐺/𝐻 we take the length of the shortest
exponential curve connecting those two points’.
The following lemma quantifies how well our estimate

approximates the true metric.

Lemma 2 (Bounding the logarithmic metric estimate)
There exists a 𝐶metr ≥ 1 so that

𝑑G (𝑝0, 𝑝) ≤ 𝜌G (𝑝) ≤ 𝐶metr𝑑G (𝑝0, 𝑝) (35)

for all 𝑝 ∈ 𝐺/𝐻 in a compact neighborhood around 𝑝0 away
from the cut-locus.

The proof of this lemma can be found in Appendix A.

Remark 9 (Logarithmic metric estimate in principal homoge-
neous spaces)When we take a principal homogeneous space
such asM2 ≡ 𝑆𝐸 (2) with a left-invariant metric tensor field
the metric estimate simplifies to

𝜌G (𝑔) =
log𝐺 𝑔G |𝑒 ,

hence we see that this construction generalizes the logarithmic
estimate, as used in [79, 80], to homogeneous spaces other
than the principal.

Remark 10 (Logarithmic metric estimate forM2) Using the
(𝑥, 𝑦, \) coordinates forM2 and a left-invariant metric tensor
field of the form (20)we formulate themetric estimate in terms
of the following auxiliary functions called the exponential
coordinates of the first kind:

𝑐1 (𝑥, 𝑦, \) :=
{
\
2
(
𝑦 + 𝑥 cot \2

)
if \ ≠ 0,

𝑥 if \ = 0,

𝑐2 (𝑥, 𝑦, \) :=
{
\
2
(
−𝑥 + 𝑦 cot \2

)
if \ ≠ 0,

𝑦 if \ = 0,

𝑐3 (𝑥, 𝑦, \) := \.
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The logarithmic metric estimate for 𝑆𝐸 (2) is then given by
𝜌G (𝑥, 𝑦, \) =√︃
𝑤𝑀 𝑐1 (𝑥, 𝑦, \)2 + 𝑤𝐿 𝑐2 (𝑥, 𝑦, \)2 + 𝑤𝐴 𝑐3 (𝑥, 𝑦, \)2,
this estimate is illustrated in figure 9 where it is contrasted
against the exact metric.

Out[ ]= Out[ ]=

Fig. 9 Comparing the ‘exact’ Riemannian distance (left) obtained
through numerically solving the Eikonal equation [28] versus the loga-
rithmic metric estimate (right) on 𝑆𝐸 (2) endowed with a left-invariant
Riemannian metric tensor field (20) with 𝑤𝑀 = 1, 𝑤𝐿 = 2, 𝑤𝐴 = 1/𝜋.

We can see that the metric estimate 𝜌G (and consequently
any function of 𝜌G) has the necessary compatibility property
to be a kernel used in convolutions per Def. 9.
Proposition 7 (Kernel compatibility of 𝜌G) Let G be a
𝐺-invariant metric tensor field on 𝐺/𝐻 then we have

∀𝑝 ∈ 𝐺/𝐻, ∀ℎ ∈ 𝐻 : 𝜌G (ℎ𝑝) = 𝜌G (𝑝). (36)

Proof We rewrite Def. 10 and find

𝜌G (𝑝) = inf
𝑔∈𝑝

 𝜕𝜕𝑡 exp𝐺 (
𝑡 log𝐺 𝑔

)
𝑝0
��
𝑡=0


G |𝑝0

,

where we recognize that we are optimizing over left-invariant
curves in 𝐺 whose actions connect 𝑝0 (at 𝑡 = 0) to ℎ𝑝
(at 𝑡 = 1). Due to the 𝐺-invariance of G and the fact that
ℎ𝑝0 = 𝑝0 the following equality holds for all ℎ ∈ 𝐻:

= inf
𝑔∈𝑝

(𝐿ℎ)∗ 𝜕𝜕𝑡 exp𝐺 (
𝑡 log𝐺 𝑔

)
𝑝0
��
𝑡=0


G |𝑝0

.

This can be rewritten as:

= inf
𝑔∈𝑝

 𝜕𝜕𝑡 ℎ exp𝐺 (
𝑡 log𝐺 𝑔

)
𝑝0
��
𝑡=0


G |𝑝0

.

Now we see that we are optimizing over a set of left-invariant
curves whose actions connect 𝑝0 (at 𝑡 = 0) to ℎ𝑝 (at 𝑡 = 1)
i.e. we have:

= inf
𝑔∈ℎ𝑝

 𝜕𝜕𝑡 exp𝐺 (
𝑡 log𝐺 𝑔

)
𝑝0
��
𝑡=0


G |𝑝0

= 𝜌G (ℎ𝑝).
ut

Now that we have developed and analyzed the logarithmic
metric estimate we can use it to construct an approximation
to the diffusion kernel for 𝛼 = 1.

Definition 11 (Approximate 𝛼 = 1 kernel)

𝐾
1,appr
𝑡 (𝑝) := [𝑡 exp

(
−
𝜌G (𝑝)2

4𝑡

)
(37)

where [𝑡 is a normalization constant for a given 𝑡, this can
either be the 𝐿1 normalization constant or in the case of
groups of polynomial growth: [𝑡 = `G

(
𝐵(𝑝0,

√
𝑡)
)−1
, see

the definition of polynomial growth below .

On Lie groups of polynomial growth this approximate
kernel be bounded from above and below by the exact kernels.

Definition 12 (Polynomial growth)ALie group𝐺 with left-
invariant Haar measure `𝐺 is of polynomial growth when the
volume of a sphere of radius 𝑟 around 𝑔 ∈ 𝐺:

𝐵(𝑔, 𝑟) =
{
𝑔′ ∈ 𝐺

�� 𝑑 G̃ (𝑔, 𝑔′) < 𝑟} ,
can be polynomialy bounded, i.e. there exists constants 𝛿 > 0
and 𝐶grow > 0 so that

1
𝐶grow

𝑟 𝛿 ≤ `𝐺 (𝐵(𝑔, 𝑟)) ≤ 𝐶grow𝑟 𝛿 , 𝑟 ≥ 1.

Since `𝐺 is left-invariant the choice of 𝑔 does not matter.

Lemma 3 Let 𝐺 be of polynomial growth and let 𝐾1𝑡 be the
fundamental solution to the 𝛼 = 1 diffusion equation on 𝐺/𝐻
then there exists constants 𝐶 ≥ 1 , 𝐷1 ∈ (0, 1) and 𝐷2 > 𝐷1
so that for all 𝑡 > 0 the following holds:

1
𝐶
𝐾1𝐷1𝑡 (𝑝) ≤ 𝐾

1,appr
𝑡 (𝑝) ≤ 𝐶𝐾1𝐷2𝑡 (𝑝). (38)

for all 𝑝 ∈ 𝐺/𝐻.

Proof On a group of polynomial growth we have [𝑡 =

`G
(
𝐵(𝑝0,

√
𝑡)
)−1
. If 𝐺 is of polynomial growth we can

apply [81, Thm. 2.12] to find that there exists constants
𝐶1, 𝐶2 > 0 and for all Y > 0 there exists a constant 𝐶Y so
that:

𝐶1[𝑡 exp
(
−
𝑑G (𝑝0, 𝑝)2

4𝐶2𝑡

)
≤ 𝐾1𝑡 (𝑝)

≤ 𝐶Y[𝑡 exp
(
−
𝑑G (𝑝0, 𝑝)2

4(1 + Y)𝑡

)
.

Note that Maheux [81] uses right cosets while we use left
cosets. We can translate the results easily by inversion in view
of (𝑔𝐻)−1 = 𝐻−1𝑔−1 = 𝐻𝑔−1. We then apply the result of
Maheux to the correct (invertible) 𝐺-invariant metric tensor
field on 𝐺/𝐻.
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Also note the different (but equivalent) way Maheux re-
lates distance on the group with distance on the homogeneous
space. While we use a pseudometric on𝐺 induced by a metric
on 𝐺/𝐻, Maheux uses a metric on 𝐺/𝐻 induced by a metric
on 𝐺 by:

𝑑maheux
𝐺/𝐻 (𝑝1, 𝑝2) = inf

𝑔1∈𝑝1
inf
𝑔2∈𝑝2

𝑑maheux𝐺 (𝑔1, 𝑔2)

= inf
𝑔2∈𝑝2

𝑑maheux𝐺 (𝑞1, 𝑔2),
(39)

for any choice of 𝑞1 ∈ 𝑝1. We avoid having to minimize
inside the cosets as in (39) thanks to the inherent symmetries
in our pseudometric.
Now using the inequalities from Lemma 2 we obtain:

𝐶1[𝑡 exp
(
−
𝜌G (𝑝)2

4𝐶2𝑡

)
≤ 𝐾1𝑡 (𝑝)

≤ 𝐶Y[𝑡 exp
(
−

𝜌G (𝑝)2

4𝐶2metr (1 + Y)𝑡

)
,

which leads to:

𝐶1
[𝑡

[𝑐2𝑡
𝐾
1,appr
𝐶2𝑡

(𝑝) ≤ 𝐾1𝑡 (𝑝)

≤ 𝐶Y
[𝑡

[𝐶2metr (1+Y)𝑡
𝐾
1,appr
𝐶2metr (1+Y)𝑡

(𝑝).

The group 𝐺 being of polynomial growth also implies
𝐺/𝐻 is a doubling space [81, Thm. 2.17]. Using the volume
doubling and reverse volume doubling property of doubling
spaces [82, Prop. 3.2 and 3.3] we find that there exist constants
𝐶3, 𝐶4, 𝛽, 𝛽

′ > 0 so that:

[𝑡

[𝑐2𝑡
≥ 𝐶3

( √
𝑡

√
𝐶2𝑡

)𝛽
= 𝐶3𝐶

−𝛽/2
2 ,

[𝑡

[𝐶2metr (1+Y)𝑡
≤ 𝐶4

©«
√
𝑡√︃

𝐶2metr (1 + Y)𝑡

ª®®¬
𝛽′

= 𝐶4

(
𝐶2metr (1 + Y)

)−𝛽′/2
.

Applying these inequalities we get:

𝐶 ′
1 := 𝐶1𝐶3𝐶

−𝛽/2
2

and

𝐶 ′
Y := 𝐶Y𝐶4

(
𝐶2metr (1 + Y)

)−𝛽′/2
we obtain:

𝐶 ′
1𝐾
1,appr
𝐶2𝑡

(𝑝) ≤ 𝐾1𝑡 (𝑝) ≤ 𝐶 ′
Y𝐾
1,appr
𝐶2metr (1+Y)𝑡

(𝑝).

Reparametrising 𝑡 in both inequalities gives:

1
𝐶 ′
Y

𝐾1
𝑡/(𝐶2metr (1+Y))

(𝑝) ≤ 𝐾1,appr𝑡 (𝑝) ≤ 1
𝐶 ′
1
𝐾1
𝐶−1
2 𝑡

(𝑝).

Finally we fix Y > 0 and relabel constants:

𝐶 := max
{
𝐶 ′−1
1 , 𝐶 ′

Y , 1
}
,

𝐷1 :=
1

𝐶2metr (1 + Y)
,

𝐷2 :=
1
𝐶2
,

observe that since Y > 0 and 𝐶metr ≥ 1 we have 0 < 𝐷1 < 1.
ut

Depending on the actually achievable constants, Lem. 3
provides a very strong or very weak bound on how much
our approximation deviates from the fundamental solution.
Fortunately in the 𝑆𝐸 (2) case our approximation is very close
to the exact kernel in the vicinity of the origin, as can be
seen in Fig. 10. In our experiments we sample the kernel on
a grid around the origin, hence this approximation is good
for reasonable values of the metric parameters.

Fig. 10 Comparing the numerically computed heat kernel 𝐾 1𝑡 (left)
with our approximation 𝐾 1,appr𝑡 based on the logarithmic norm estimate
(right) for𝐺/𝐻 = 𝑆𝐸 (2) . Shown here at 𝑡 = 1 with the same metric as
in Fig. 9. Especially in deep learning applications where discretization
is very coarse our approximation is sufficiently accurate.

Now let us develop an approximation for values of 𝛼 other
than 1. From semi-group theory [83] it follows that semi-
groups generated by taking fractional powers of the generator
(in our case ΔG → −(−ΔG)𝛼) amounts to the following key
relation between the 𝛼-kernel and the diffusion kernel:

𝐾𝛼𝑡 (𝑝) :=
∫ ∞

0
𝑞𝑡 ,𝛼 (𝜏) 𝐾1𝜏 (𝑝) d𝜏, (40)

for 𝛼 ∈ (0, 1) and 𝑡 > 0 where 𝑞𝑡 ,𝛼 is defined as follows.

Definition 13 Let L−1 be the inverse Laplace transform then

𝑞𝑡 ,𝛼 (𝜏) := L−1
(
𝑟 ↦→ 𝑒−𝑡𝑟

𝛼
)
(𝜏) for 𝜏 ≥ 0.

For explicit formulas of this kernel see [83, Ch. IX:11 eq. 17].
Since 𝑒−𝑡𝑟 𝛼 is positive for all 𝑟 it follows that 𝑞𝑡 ,𝛼 is also
positive everywhere.
Now instead of integrating 𝐾1𝑡 to obtain the exact funda-

mental solution, we can replace it with our approximation
𝐾
1,appr
𝑡 to obtain an approximate 𝛼-kernel.



16 Bart M.N. Smets et al.

Definition 14 (Approximate 𝛼 ∈ (0, 1) kernel) Akin to
(40) we set 𝛼 ∈ (0, 1), 𝑡 > 0 and define:

𝐾
𝛼,appr
𝑡 (𝑝) :=

∫ ∞

0
𝑞𝑡 ,𝛼 (𝜏) 𝐾1,appr𝜏 (𝑝) d𝜏 ≥ 0, (41)

for 𝑝 ∈ 𝐺/𝐻.

The bounding of 𝐾1𝑡 we obtained in Lem. 3 transfers
directly to our approximation for other 𝛼.

Theorem 1 Let 𝐺 be of polynomial growth and let 𝐾𝛼𝑡 be
the fundamental solution to the 𝛼 ∈ (0, 1] diffusion equation
on 𝐺/𝐻 then there exists constants 𝐶 ≥ 1 , 𝐷1 ∈ (0, 1) and
𝐷2 > 𝐷1 so that for all 𝑡 > 0 and 𝑝 ∈ 𝐺/𝐻 the following
holds:
1
𝐶
𝐾𝛼𝐷𝛼

1 𝑡
(𝑝) ≤ 𝐾𝛼,appr𝑡 (𝑝) ≤ 𝐶𝐾𝛼𝐷𝛼

2 𝑡
(𝑝). (42)

Proof This is an consequence of Lem. 3 and the fact that
𝑞𝑡 ,𝛼 is positive, applying the integral from (40) yields:

𝐾
𝛼,appr
𝑡 (𝑝) =

∫ ∞

0
𝑞𝑡 ,𝛼 (𝜏)𝐾1,appr𝜏 (𝑝) d𝜏

(Lem. 3) ≤ 𝐶
∫ ∞

0
𝑞𝑡 ,𝛼 (𝜏)𝐾1𝐷2𝜏 (𝑝) d𝜏

(𝜏′=𝐷2𝜏) = 𝐶

∫ ∞

0

1
𝐷2
𝑞𝑡 ,𝛼

(
𝜏′

𝐷2

)
𝐾1𝜏′ (𝑝) d𝜏′

(Bromwich
integral

)
= 𝐶

∫ ∞

0
𝑞𝐷𝛼

2 𝑡 ,𝛼
(𝜏′) 𝐾1𝜏′ (𝑝) d𝜏′

= 𝐶𝐾𝛼𝐷𝛼
2 𝑡
(𝑝).

The other inequality works the same way. ut

Although the approximation (41) is helpful in the proof
above it contains some integration and is not an explicit ex-
pression.We leave developing a more explicit and computable
approximation for 0 < 𝛼 < 1 for future work.

5.3 Dilation and Erosion

The dilation/erosion step solves the PDE
𝜕𝑊 3

𝜕𝑡
(𝑝, 𝑡) = ±

∇G±
2
𝑊3 (𝑝, 𝑡)

2𝛼
G±
2

for 𝑝 ∈ 𝐺/𝐻,

𝑡 ≥ 0,

𝑊3 (𝑝, 0) = 𝑈3 (𝑝) for 𝑝 ∈ 𝐺/𝐻.

(43)

By a generalization of theHopf-Lax formula [84, Ch.10.3],
the solution is given by morphological convolution

𝑊3 (𝑝, 𝑡) = −
(
𝑘𝛼𝑡 �𝐺 −𝑈3

)
(𝑝) (44)

for the (+) (dilation) variant and

𝑊3 (𝑝, 𝑡) =
(
𝑘𝛼𝑡 �𝐺𝑈

3
)
(𝑝) (45)

Fig. 11 Shapes of the level sets of the kernels on M2 for solving
fractional diffusion (𝐾 𝛼

𝑡 ) and dilation/erosion (𝑘𝛼𝑡 ) for various values
of the trainable metric tensor field parameters 𝑤𝑀 , 𝑤𝐿 and 𝑤𝐴. This
shape is essentially what is being optimized during the training process
of a metric tensor field onM2.

for the (−) (erosion) variant, where the kernel 𝑘𝛼𝑡 (also called
the structuring element in the context of morphology) is given
as follows.

Definition 15 (Dilation/erosion kernels) The morphologi-
cal convolution kernel 𝑘𝛼𝑡 for small times 𝑡 and 𝛼 ∈ (1/2, 1] is
given by

𝑘𝛼𝑡 (𝑝) := a𝛼𝑡−
1

2𝛼−1 dG2 (𝑝0, 𝑝)
2𝛼
2𝛼−1 , (46)

with a𝛼 :=
(

2𝛼−1
(2𝛼)2𝛼/(2𝛼−1)

)
and for 𝛼 = 1/2 by

𝑘
1/2
𝑡 (𝑝) =

{
0 if dG2 (𝑝0, 𝑝)2𝛼 ≤ 𝑡,
∞ if dG2 (𝑝0, 𝑝)2𝛼 > 𝑡.

(47)

In the above definition and for the rest of the section we write
G2 for either G+

2 or G
−
2 depending on whether we are dealing

with the dilation or erosion variant. The morphological convo-
lution �𝐺 (alternatively: the infimal convolution) is specified
as follows.

Definition 16 (Morphological group convolution)Let 𝑓 ∈
𝐿∞ (𝐺/𝐻), let 𝑘 : 𝐺/𝐻 → R ∪ {∞} be proper (not every-
where∞) then we define:

(𝑘 �𝐺 𝑓 ) (𝑝) := inf
𝑔∈𝐺

{
𝑘
(
𝑔−1𝑝

)
+ 𝑓 (𝑔𝑝0)

}
:= inf

𝑔∈𝐺

{
𝑘
(
𝑔−1𝑝

)
+ 𝑓 (𝑔𝐻)

}
.

Remark 11 (Grayscale morphology)Morphological convo-
lution is related to the grayscale morphology operations ⊕
(dilation) and 	 (erosion) on R𝑑 as follows:

𝑓1 ⊕ 𝑓2 = − (− 𝑓1 �R𝑑 − 𝑓2) ,
𝑓1 	 𝑓2 = 𝑓1 �R𝑑 [𝑥 ↦→ − 𝑓2 (−𝑥)] ,



PDE-based Group Equivariant Convolutional Neural Networks 17

where 𝑓1 and 𝑓2 are proper functions on R𝑑 . Hence our use
of the terms dilation and erosion, but mathematically we will
only use �𝐺 as the actual operation to be performed and avoid
⊕ and 	.

Combining morphological convolution with the structur-
ing element 𝑘𝛼𝑡 allows us to solve (43).

Theorem 2 Let 𝐺 be of polynomial growth, let 𝛼 ∈ (1/2, 1]
and let 𝑈3 : 𝐺/𝐻 → R be Lipschitz. Then 𝑊3 : 𝐺/𝐻 ×
(0,∞) → R given by

𝑊3 (𝑝, 𝑡) := (𝑘𝛼𝑡 �𝐺𝑈3) (𝑝)

is Lipschitz and solves the (−)-variant, the erosion variant,
of the system (43) in the sense of Theorem 2.1 in [85], while

𝑊3 (𝑝, 𝑡) := −(𝑘𝛼𝑡 �𝐺 −𝑈3) (𝑝)

is Lipschitz and solves the (+)-variant, the dilation variant, of
system (43) in the sense of Theorem 2.1 in [85]. The kernels
satisfy the semigroup property

𝑘𝛼𝑡 �𝐺 𝑘
𝛼
𝑠 = 𝑘𝛼𝑡+𝑠

for all 𝑠, 𝑡 ≥ 0 and 𝛼 ∈ (1/2, 1]

Proof The Riemannian manifold (𝐺/𝐻,G2) is a proper
length space, and therefore the theory of [85] applies. More-
over since 𝐺 is of polynomial growth we have that 𝐺/𝐻 is a
doubling space [81, Thm. 2.17] and also admits a Poincaré
constant [81, Thm. 2.18]. So we meet the additional require-
ments of [85, Thm. 2.3 (vii) and (viii)].
The Hamiltonian H : R+ → R+ in [85] is given by

H(𝑥) = 𝑥2𝛼. This Hamiltonian is indeed superlinear, convex,
and satisfies H(0) = 0. The corresponding Lagrangian L :
R+ → R+ becomes

L(𝑥) = a𝛼 𝑥
2𝛼
2𝛼−1 .

According to [85] the solution (in the sense of their Theorem
2.1) to the (−)-variant of system (43) is given by

𝑊3 (𝑝, 𝑡) = inf
𝑥∈𝐺/𝐻

{
𝑡L

(
dG2 (𝑝, 𝑥)

𝑡

)
+𝑈3 (𝑥)

}
= inf
𝑔∈𝐺

{
𝑡L

(
dG2 (𝑝, 𝑔𝑝0)

𝑡

)
+𝑈3 (𝑔𝑝0)

}
= inf
𝑔∈𝐺

{
𝑡L

(
dG2 (𝑔−1𝑝, 𝑝0)

𝑡

)
+𝑈3 (𝑔𝑝0)

}
= inf
𝑔∈𝐺

{
a𝛼

dG2 (𝑔−1𝑝, 𝑝0)
2𝛼
2𝛼−1

𝑡
2𝛼
2𝛼−1−1

+𝑈3 (𝑔𝑝0)
}

= inf
𝑔∈𝐺

{
a𝛼𝑡

1− 2𝛼
2𝛼−1 dG2 (𝑔−1𝑝, 𝑝0)

2𝛼
2𝛼−1 +𝑈3 (𝑔𝑝0)

}
= inf
𝑔∈𝐺

{
a𝛼𝑡

−1
2𝛼−1 dG2 (𝑔−1𝑝, 𝑝0)

2𝛼
2𝛼−1 +𝑈3 (𝑔𝑝0)

}
= (𝑘𝛼𝑡 �𝐺𝑈3) (𝑝).

The (+)-variant is proven analogously.
The semigroup property follows directly from [85, Thm

2.1(ii)]. ut

Remark 12 (Solution according to Balogh et al.)
This theorem builds on the work by Balogh et al. [85] who
provide a solution concept that is (potentially) different from
the strong, weak or viscosity solution. The point of departure
is to replace the norm of the gradient (i.e. the dual norm of
the differential) with a metric subgradient, i.e. we replace∇G2𝑊 (𝑝, 𝑡)


G2 by:

lim sup
𝑝′→𝑝

max (𝑊 (𝑝, 𝑡) −𝑊 (𝑝′, 𝑡), 0)
𝑑G2 (𝑝, 𝑝′)

,

and we get a solution concept in terms of this slightly different
notion of a gradient.

Remark 13 (Unique viscosity solutions)
For the case 𝛼 = 1/2 we lose the superlinearity of the Hamil-
tonian and can no longer apply Balogh et al.’s approach [85].
The solution for 𝛼 > 1/2 (46) converges pointwise to the solu-
tion for 𝛼 = 1/2 (47) as 𝛼 ↓ 1/2. However, the solution concept
changes from that of Balogh et al. to that of a viscosity solu-
tion [86, 87]. In the general Riemannian homogeneous space
setting the result by Azagra [87, Thm 6.24] applies. It states
that visosity solutions of Eikonal PDEs on complete Rieman-
nian manifolds are given by the distance map departing from
the boundary of a given open and bounded set. As Eikonal
equations directly relate to geodesically equidistant wavefront
propagation on manifolds ( [88, ch. 3], [28, ch. 4,app. E], [84])
one expects that the solutions (44),(45) of (43) are indeed the
viscosity solutions (for resp. the + and −-case) for 𝛼 = 1/2.
In many matrix Lie group quotients, like the Heisenberg

group 𝐻 (2𝑑 + 1) studied in [89], or in our case of interest:
the homogeneous space M𝑑 of positions and orientations)
this is indeed the case. One can describe 𝐺-invariant vector
fields via explicit coordinates and transfer HJB systems on
𝐺/𝐻 directly towards HJB-systems on R𝑛 or R𝑑 × 𝑆𝑞 , with
𝑛 = 𝑑 + 𝑞 = dim(𝐺/𝐻). Then one can directly apply results
by Dragoni [86, Thm.4] and deduce that our solutions, the
dilations in (44) resp. erosions in (45), are indeed the unique
viscosity solutions of HJB-PDE system (43) for the + and
−-case, for all 𝛼 ∈ [1/2, 1]. Details are left for future research.

To get an idea of how the kernel in (46) operates in
conjunction with morphological convolution we take 𝐺 =

𝐺/𝐻 = R and see how the operation evolves simple data, the
kernels and results at 𝑡 = 1 are shown in Fig. 12. Observe that
with 𝛼 close to 1/2 (kernel and result in red) that we obtain
what amounts to an equivariant version of max/min pooling.
The level sets of the kernels 𝑘𝛼𝑡 for 𝛼 > 1/2 are of the same

shape as for the approximate diffusion kernels, see Fig. 11, for
𝛼 = 1/2 these are the stencils over which we would perform
min/max pooling.
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Fig. 12 In the center we have kernels of the type (46) in R (or the signed distance on a manifold of choice) for some 𝛼 ∈ (1/2, 1] and 𝑡 = 1, which
solves dilation/erosion. For 𝛼 → 1/2 this kernel converges to the type in (47), i.e. the solution is obtained by max/min pooling. On the left we
morphologically convolve a spike (in gray) with a few of these kernels, we see that if 𝛼→ 1/2 we get max pooling, conversely we can call the case
𝛼 > 1/2 soft max pooling. On the right we similarly erode a plateau, which for 𝛼→ 1/2 yields min pooling. The effects of these operations in the
image processing context can also be seen in the last two columns of Fig. 6.

Remark 14 The level sets in Fig. 11 are balls in 𝐺/𝐻 = M2
that do not depend on 𝛼. It is only the growth of the kernel
values when passing through these level sets that depends
on 𝛼. As such the example 𝐺/𝐻 = R and Fig. 12 is very
representative to the general 𝐺/𝐻 case. In the general 𝐺/𝐻
case Fig. 11 still applies when one replaces the horizontal
R-axis with a signed distance along a minimizing geodesic
in 𝐺/𝐻 passing through the origin. In that sense 𝛼 ∈ [1/2, 1]
regulates soft-max pooling over Riemannian balls in 𝐺/𝐻.

We can now define a more tangible approximate kernel
by again replacing the exact metric 𝑑G2 with the logarithmic
approximation 𝜌G2 .

Definition 17 (Approximate dilation/erosion kernel) The
approximate morphological convolution kernel 𝑘𝛼,appr𝑡 for
small times 𝑡 and 𝛼 ∈ (1/2, 1] is given by

𝑘
𝛼,appr
𝑡 (𝑝) := a𝛼𝑡−

1
2𝛼−1 𝜌G2 (𝑝)

2𝛼
2𝛼−1 , (48)

with a𝛼 :=
(

2𝛼−1
(2𝛼)2𝛼/(2𝛼−1)

)
and for 𝛼 = 1/2 by

𝑘
1/2,appr
𝑡 (𝑝) =

{
0 if 𝜌G2 (𝑝) ≤ 𝑡,
∞ if 𝜌G2 (𝑝) > 𝑡

. (49)

We used this approximation in our parallel GPU-algorithms
(for our PDE-G-CNNs experiments in Section 7). It is highly
preferable over the ‘exact’ solution based on the true distance
as this would require Eikonal PDE solvers ( [28, 90] which
would not be practical for parallel GPU implementations
of PDE-G-CNNs. Again the approximations are reasonable,
likewise Fig. 10, even on coarse grids in practice [75], and
again the approximations rely on the core idea of Lemma 2.
Next we formalize the theoretical underpinning of the

approximations in the upcoming corollary.
An immediate consequence of Def. 17 and Lem. 2 (keep-

ing in mind that the kernel expressions in Def. 17 are mono-
tonic w.r.t. 𝜌 := 𝜌G2 (𝑝)) is that we can enclose our approx-
imate morphological kernel with the exact morphological

kernels in the same way as we did for the (fractional) diffusion
kernel in Theorem 1. This proves the following Corollaries:

Corollary 3 Let 𝛼 ∈ (1/2, 1] then for all 𝑡 > 0

𝑘𝛼𝑡 (𝑝) ≤ 𝑘
𝛼,appr
𝑡 (𝑝) ≤ 𝐶

2𝛼
2𝛼−1
metr 𝑘

𝛼
𝑡 (𝑝) for 𝑝 ∈ 𝐺/𝐻.

For the case 𝛼 = 1/2 the approximation is exact in an inner
and outer region:

𝑘
1/2,appr
𝑡 (𝑝) = 𝑘 1/2𝑡 (𝑝) = 0 if 𝜌G2 (𝑝)2𝛼 ≤ 𝑡,
𝑘
1/2,appr
𝑡 (𝑝) = 𝑘 1/2𝑡 (𝑝) = ∞ if dG2 (𝑝0, 𝑝)2𝛼 > 𝑡,

but in the intermediate region where 𝜌G2 (𝑝)2𝛼 > 𝑡 and
dG2 (𝑝0, 𝑝)2𝛼 ≤ 𝑡 we have 𝑘

1/2,appr
𝑡 = ∞ while 𝑘

1/2
𝑡 = 0.

Alternatively, instead of bounding by value we can bound
in time, in which case we do not need to distinguish different
cases of 𝛼.

Corollary 4 Let 𝛼 ∈ [1/2, 1] , 𝑡 > 0 then for all 𝑝 ∈ 𝐺/𝐻
one has

𝑘𝛼𝑡 (𝑝) ≤ 𝑘
𝛼,appr
𝑡 (𝑝) ≤ 𝑘𝛼

𝐶−2𝛼
metr 𝑡

(𝑝)

With these two bounds on our approximate morphological
kernels we end our theoretical results.

6 Generalization of (Group-)CNNs

In this section we point out the similarities between common
(G-)CNN operations and our PDE-based approach. Our goal
here is not somuch claiming that our PDE approach serves as a
useful model for analyzing (G-)CNNs, but that modern CNNs
already bear some resemblance to a network of PDE solvers.
Noticing that similarity, our approach is then just taking the
next logical step by structuring a network to explicitly solve a
set of PDEs.



PDE-based Group Equivariant Convolutional Neural Networks 19

6.1 Discrete Convolution as Convection & Diffusion

Now that we have seen how PDE-G-CNNs are designed we
show how they generalize conventional G-CNNs. Starting
with an initial condition𝑈 we show how group convolution
with a general kernel 𝑘 can be interpreted as a superposition
of solutions (26) of convection PDEs:(
𝑘 ∗𝐺/𝐻 𝑈

)
(𝑝) = 1

`𝐺 (𝐻)

∫
𝐺

𝑘

(
𝑔−1𝑝

)
𝑈 (𝑔𝑝0) d`𝐺 (𝑔)

=
1

`𝐺 (𝐻)

∫
𝐺

𝑘

(
𝑔−1𝑔𝑝𝑝0

)
𝑈 (𝑔𝑝0) d`𝐺 (𝑔),

for any 𝑔𝑝 ∈ 𝑝, now change variables to 𝑞 = 𝑔−1𝑝 𝑔 and recall
that `𝐺 is left invariant:

=
1

`𝐺 (𝐻)

∫
𝐺

𝑘

(
𝑞−1𝑝0

)
𝑈

(
𝑔𝑝𝑞𝑝0

)
d`𝐺 (𝑞).

In this last expression we recognize (26) and see that we can
interpret 𝑝 ↦→ 𝑈

(
𝑔𝑝 𝑞𝑝0

)
as the solution of the convection

PDE (25) at time 𝑡 = 1 for a convection vector field 𝒄 that
has flow lines given by 𝛾𝒄 (𝑡) = exp𝐺

(
−𝑡 log𝐺 𝑞

)
𝑝0 so that

(𝛾c (1))−1𝑝0 = 𝑞𝑝0. As a result the output 𝑘 ∗𝐺/𝐻 𝑈 can then
be seen as a weighted sum of solutions over all possible left
invariant convection vector fields.
Using this result we can consider what happens in the

discrete case where we take the kernel 𝑘 to be a linear
combination of displaced diffusion kernels 𝐾𝛼𝑡 (for some
choice of 𝛼) as follows:

𝑘 (𝑝) =
𝑛∑︁
𝑖=1

𝑘𝑖 𝐾
𝛼
𝑡𝑖

(
𝑔−1𝑖 𝑝

)
, (50)

where for all 𝑖 we fix a weight 𝑘𝑖 ∈ R, diffusion time 𝑡𝑖 ≥ 0
and a displacement 𝑔𝑖 ∈ 𝐺. Convolving with this kernel
yields:(
𝑘 ∗𝐺/𝐻 𝑈

)
(𝑝)

=

∫
𝐺

𝑛∑︁
𝑖=1

𝑘𝑖 𝐾
𝛼
𝑡𝑖

(
𝑔−1𝑖 𝑔−1𝑝

)
𝑈 (𝑔𝑝0) d`𝐺 (𝑔)

=

𝑛∑︁
𝑖=1

𝑘𝑖

∫
𝐺

𝐾𝛼𝑡𝑖

(
𝑔−1𝑖 𝑔−1𝑝

)
𝑈 (𝑔𝑝0) d`𝐺 (𝑔),

we change variables to ℎ = 𝑔 𝑔𝑖:

=

𝑛∑︁
𝑖=1

𝑘𝑖

∫
𝐺

𝐾𝛼𝑡𝑖

(
ℎ−1𝑝

)
𝑈

(
ℎ 𝑔−1𝑖 𝑝0

)
d`𝐺 (ℎ)

=

𝑛∑︁
𝑖=1

𝑘𝑖

(
𝐾𝛼𝑡𝑖 ∗𝐺/𝐻

[
𝑞 ↦→ 𝑈

(
𝑔𝑞 𝑔

−1
𝑖 𝑝0

)] )
(𝑝).

Here again we recognize 𝑞 ↦→ 𝑈
(
𝑔𝑞 𝑔

−1
𝑖
𝑝0
)
as the solution

(26) of the convection PDE at 𝑡 = 1 with flow lines induced

by 𝛾𝒄 (𝑡) = exp𝐺 (𝑡 log𝐺 𝑔𝑖). Subsequently we take these so-
lutions and convolve them with a (fractional) diffusion kernel
with scale 𝑡𝑖 , i.e. after convection we apply the fractional
diffusion PDE with evolution time 𝑡𝑖 and finally make a linear
combination of the results.
We can conclude that G-CNNs fit in our PDE-based

model by looking at a single discretized group convolution as
a set of single-step PDE units working on an input, sans the
morphological convolution and with specific choices made
for the convection vector fields and diffusion times.

6.2 Max Pooling as Morphological Convolution

The ordinary max pooling operation commonly found in
convolutional neural networks can also be seen as a morpho-
logical convolution with a kernel for 𝛼 = 1/2.

Proposition 8 (Max pooling) Let 𝑓 ∈ 𝐿∞ (𝐺/𝐻), let 𝑆 ⊂
𝐺/𝐻 be non empty and define 𝑘𝑆 : 𝐺/𝐻 → R ∪ {∞} as:

𝑘𝑆 (𝑝) :=
{
0 if 𝑝 ∈ 𝑆,
∞ else.

(51)

Then:

− (𝑘𝑆 �− 𝑓 ) (𝑝) = sup
𝑔∈𝐺:𝑔−1 𝑝∈𝑆

𝑓 (𝑔𝑝0) . (52)

We can recognize the morphological convolution as a gener-
alized form of max pooling of the function 𝑓 with stencil 𝑆.

Proof Filling in (51) into Def. 16 yields:

− (𝑘𝑆 �− 𝑓 ) (𝑝)

= − inf
{

inf
𝑔∈𝐺:𝑔−1 𝑝∈𝑆

− 𝑓 (𝑔𝑝0) , inf
𝑔∈𝐺:𝑔−1 𝑝∉𝑆

− 𝑓 (𝑔𝑝0) + ∞
}

= − inf
𝑔∈𝐺:𝑔−1 𝑝∈𝑆

− 𝑓 (𝑔𝑝0)

= sup
𝑔∈𝐺:𝑔−1 𝑝∈𝑆

𝑓 (𝑔𝑝0) .

ut

In particular cases we recover a more familiar form of
max pooling as the following corollary shows.

Corollary 5 (Euclidean Max Pooling) Let 𝐺 = 𝐺/𝐻 = R𝑛

and let 𝑓 ∈ 𝐶0 (R𝑛) with 𝑆 ⊂ R𝑛 compact then:

− (𝑘𝑆 �R𝑛 − 𝑓 ) (𝑥) = max
𝑦∈𝑆

𝑓 (𝑥 − 𝑦) ,

for all 𝑥 ∈ R𝑛.
The observation that max pooling is a particular limiting

case of morphological convolution allows us to think of the
case with 𝛼 > 1/2 as a soft variant of max pooling, one that
is better behaved under small perturbations in a discretized
context.
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6.3 ReLUs as Morphological Convolution

Max pooling is not the only common CNN operation that can
be generalized by morphological convolution as the following
proposition shows.

Proposition 9 Let 𝑓 be a compactly supported continuous
function on 𝐺/𝐻. Then dilation with the kernel

𝑘ReLU, 𝑓 (𝑝) :=

0 if 𝑝 = 𝑝0,

sup
𝑝∈𝐺/𝐻

𝑓 (𝑝) else,

equates to applying a Rectified Linear Unit to the function 𝑓 :

−
(
𝑘ReLU, 𝑓 �− 𝑓

)
(𝑝) = max

{
0, 𝑓 (𝑝)

}
.

Proof Filling in 𝑘 into the definition of morphological con-
volution:

−
(
𝑘ReLU, 𝑓 �𝐺 − 𝑓

)
(𝑝)

= − inf
𝑔∈𝐺

𝑘ReLU (𝑔−1𝑝) − 𝑓 (𝑔.𝑝0)

= − inf
𝑔∈𝐺

{
inf

𝑔−1 𝑝=𝑝0
− 𝑓 (𝑔𝑝0), inf

𝑔−1 𝑝≠𝑝0
− 𝑓 (𝑔𝑝0) + sup

𝑦∈𝐺/𝐻
𝑓 (𝑦)

}
= sup

{
𝑓 (𝑝), sup

𝑧∈𝐺/𝐻 :𝑧≠𝑝
𝑓 (𝑧) − sup

𝑦∈𝐺/𝐻
𝑓 (𝑦)

}
,

due to the continuity and compact support of 𝑓 its supre-
mum exists and moreover we have sup𝑧∈𝐺/𝐻 :𝑧≠𝑝0 𝑓 (𝑧) =

sup𝑦∈𝐺/𝐻 𝑓 (𝑦) and thereby we obtain the required result

= max
{
𝑓 (𝑝), 0

}
.

ut

We conclude that morphological convolution allows us
to:

– do pooling in an equivariant manner with transformations
other then translation,

– do soft pooling that is continuous under domain transfor-
mations (illustrated in Fig. 12),

– learn the pooling region by considering the kernel 𝑘 as
trainable,

– effectively fold the action of a ReLU into trainable non-
linearities.

6.4 Residual Networks

So called residual networks [65] were introduced mainly as
a means of dealing with the vanishing gradient problem in
very deep networks, aiding trainability. These networks use
so-called residual blocks, illustrated in Fig. 13, that feature a

Fig. 13 A residual block, like in [65], note the resemblance to a forward
Euler discretization scheme.

skip connection to group a few layers together to produce a
delta-map that gets added to the input.
This identity + delta structure is very reminiscent of a

forward Euler discretization scheme. If we had an evolution
equation of the type{
𝜕𝑈
𝜕𝑡

(𝑝, 𝑡) = F (𝑈 (·, 𝑡), 𝑝) for 𝑝 ∈ 𝑀, 𝑡 ≥ 0,
𝑈 (𝑝, 0) = 𝑈0 (𝑝) for 𝑝 ∈ 𝑀,

with some operator F : 𝐿∞ (𝑀) × 𝑀 → R, we could solve it
approximately by stepping forward with:

𝑈 (𝑝, 𝑡 + Δ𝑡) = 𝑈 (𝑝, 𝑡) + Δ𝑡 F (𝑈 (·, 𝑡), 𝑝) ,

for some timestep Δ𝑡 > 0. We see that this is very similar to
what is implemented in the residual block in Fig. 13 once we
discretize it.
The correspondence is far from exact given that multiple

channels are being combined in residual blocks, so we can
not easily describe a residual block with a PDE. Still, our
takeaway is that residual networks and skip connections have
moved CNNs from transformer networks towards what could
be described as evolution networks.
For this reason we speculate that deep PDE-G-CNNs will

not need (or have the same benefit from) skip connections,
we leave this subject for future investigation. More discussion
on the relation between residual networks and PDEs can be
found in [72].

7 Experiments

To demonstrate the viability of PDE-based CNNs we perform
two experiments where we compare the performance of PDE-
G-CNNs against G-CNNs and classic CNNs. We will be
doing a vessel segmentation and digit classification problem:
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two straightforward applications of CNNs. Examples of these
two applications are illustrated in Fig. 14.
The goal of the experiments is to compare the basic build-

ing blocks of the different types of networks in clearly defined
feed-forward network architectures. So we test networks of
modest size only and do not just aim for the performance that
would be possible with large-scale networks.

(a) Example from the DRIVE [91] dataset, showing a retinal image and its
vessel segmentation.

(b) Examples from the RotNIST [92] dataset.

Fig. 14We perform a segmentation experiment on retinal vessel images
and a classification experiment on rotation augmented digits.

7.1 Implementation

We implemented our PDE-based operators in an extension
to the PyTorch deep learning framework [93]. Our package
is called LieTorch and is open source. It is available at
https://gitlab.com/bsmetsjr/lietorch.
The operations we have proposed in the paper have been

implemented in C++ for CPUs and CUDA for Nvidia GPUs
but can be used from Python through PyTorch. Our package
was also designed with modularity in mind: we provide a host
of PyTorch modules that can be used together to implement
the PDE-G-CNNs we proposed but that can also be used
separately to experiment with other architectures.
All the modules we provide are differentiable and so

our PDE-G-CNNs are trainable through stochastic gradient
descent (or its many variants) in the usual manner. In our
experiments we have had good results with using the ADAM
[94] optimizer.

All the network models and training scripts used in the
experiments are also available in the repository.

7.2 Design Choices

Several design choices are common to both experiments, we
will go over these now.
First, we choose 𝐺/𝐻 = M2 for our G-CNNs and PDE-

G-CNNs and so go for roto-translation equivariant networks.
In all instances we lift to 8 orientations.
Second, we use the convection, dilation and erosion

version of (24), hence we refer to these networks as PDE-
CNNs of the CDE-type. Each PDE-layer is implemented
as in Fig. 1 with the single-pass PDE solver from Fig. 2
without the convolution. So no explicit diffusion is used and
the layer consists of just resampling and two morphological
convolutions. Since we do the resampling using trilinear
interpolation this does introduce a small amount of implicit
diffusion.
Third, we fix 𝛼 = 0.65. We came to this value empirically;

the networks performed best with 𝛼-values in the range
0.6− 0.7. Looking at Fig. 12 we can conjecture that 𝛼 = 0.65
is the “sweet spot” between sharpness and smoothness. When
the kernel is too sharp (𝛼 close to 1/2) minor perturbations in
the input can have large effects on the output, when the kernel
is too smooth (𝛼 close to 1) the output will be smoothed out
too much as well.
Fourth, all our networks are simple feed-forward net-

works.
Finally, we use the ADAM optimizer [94] together with

𝐿2 regularization uniformly over all parameters with a factor
of 0.005.

7.3 DRIVE Retinal Vessel Segmentation

The first experiment uses the DRIVE retinal vessel segmen-
tation dataset [91]. The object is the generate a binary mask
indicating the location of blood vessels from a color image
of a retina as illustrated in Fig. 14(a).
We test 6- and 12-layer variants of a CNN, a G-CNN and a

CDE-PDE-CNN. The layout of the 6-layer networks is shown
in Fig. 15, the 12-layer networks simply addmore convolution,
group convolution or CDE layers. All the networks were
trained on the same training data and tested on the same
testing data.
The output of the network is passed through a sigmoid

function to produce a 2D map 𝑎 of values in the range [0, 1]
which we compare against the known segmentation map 𝑏
with values in {0, 1}. We use the continuous DICE coefficient
as the loss function:

loss(𝑎, 𝑏) = 1 − 2
∑
𝑎𝑏 + Y∑

𝑎 +∑
𝑏 + Y ,

https://gitlab.com/bsmetsjr/lietorch
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where the sum
∑
is over all the values in the 2D map. A

small Y > 0 is used to avoid divide-by-zero issues and the
𝑎 ≡ 𝑏 ≡ 0 edge case.
The 6-layer networks were trained over 60 epochs, starting

with a learning rate of 0.01 that we decay exponentially with
a gamma of 0.95. The 12-layer networks were trained over
80 epochs, starting from the same learning rate but with a
learning rate gamma of 0.96.
We measure the performance of the network by the DICE

coefficient obtained on the 20 images of the testing dataset.
We trained each model 10 times, the results of which are
summarized in Tbl. 1 and Fig. 16(a).
We achieve similar or better performance than CNNs or

G-CNNs but with a vast reduction in parameters. Scaling
from 6 to 12 layers even allows us to reduce the total number
of parameters of the PDE-G-CNN while still increasing
performance.

Fig. 15 Schematic of the 6-layer models used on our segmentation
experiments. Kernel sizes and number of feature channels in each layer
are indicated, depth indicates that the data lives on M2. Omitted are
activation functions, batch normalization, padding and dropout modules.
The 12-layer models are essentially the same but with double the number
of layers but with reduced width for the CDE-PDE-CNN (hence the
reduction in parameters going from 6 to 12 layers).

7.4 RotNIST Digit Classification

The second experiment we performed is the classic digit
classification experiment. Instead of using the plain MNIST
dataset we did the experiment on the RotNIST dataset [92].
RotNIST contains the same images as MNIST but rotated
to various degrees. We made this choice to accentuate the
roto-translational equivariance properties of the G-CNN and
PDE-G-CNNs.
We tested three networks: the classic LeNet5 CNN [95]

as a baseline, a 4-layer G-CNN and a 4-layer CDE-PDE-CNN.

Model Parameters DICE score ± std.dev.
CNN 6 47352 0.8058 ± 0.0017
G-CNN 6 39258 0.8085 ± 0.0022
CDE-PDE-CNN 6 4128 0.8115 ± 0.0018

CNN 12 129432 0.8189 ± 0.0005
G-CNN 12 114378 0.8192 ± 0.0012
CDE-PDE-CNN 12 3678 0.8220 ± 0.0007

Table 1 Average DICE coefficient achieved on the 20 images of the
testing dataset and the number of trainable parameters of each model.
The G-CNNs and CDE-PDE-CNNs are roto-translation equivariant by
construction. Note the vast reduction in parameters allowed by using
PDE-based networks.

The architectures of these three networks are illustrated in
Fig. 17.
All three networks were trained on the same training

data and tested on the same testing data. We train with a
learning rate of 0.05 and a learning rate gamma of 0.96. We
trained the LeNet5 model for 120 epochs and the G-CNN and
CDE-PDE-CNN models for 60 epochs.
We measure the performance of the network by its accu-

racy on the testing dataset. We trained each model 10 times,
the results of which are summarized in Tbl. 2 and Fig. 16(b).
We manage to get better performance than classic or

group CNNs with far fewer parameters.

Model Parameters Error rate ± std.dev.
CNN (LeNet5) 44426 2.59% ± 0.66%
G-CNN Classifier 4 12700 1.14% ± 0.21%
CDE-PDE-CNN Classifier 4 2542 1.10% ± 0.10%

Table 2Accuracy of the digit classification models on the testing dataset
and number of parameters for each model.

7.5 Computational Performance

Care was taken in optimizing the implementation to show that
PDE-based networks can still achieve decent running times
despite their higher computational complexity. In Tbl. 3 we
summarized the inferencing performance of each model we
experimented with.
Our approach simultaneously gives us equivariance, a

decrease in parameters and higher performance but at the
cost of an increase in flops and memory footprint. While
our implementation is reasonably optimized it has had far
less development time dedicated to it than the traditional
CNN implementation provided by PyTorch/cuDNN, so we
are confident more performance gains can be found.
In comparison with G-CNNs our PDE-based networks

are generally a little bit faster. Our G-CNN implementation
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(a) Performance on retinal vessel segmentation. We test 6- and 12-layer vari-
ants of conventional CNNs, G-CNNs and our PDE-CNNs, each network is
trained 10 times, the chart shows the distribution of DICE performances on
the test dataset.

(b) Performance of digit classification on the RotNIST dataset. We compare
the classic 5-layer LeNet against a 4-layer G-CNN and PDE-CNN. LeNet was
trained for 120 epochs, the other two for 60 epochs.

Fig. 16 Comparison of PDE-based networks against conventional CNNs
and group CNNs on segmentation and classification tasks.

is however less optimized compared to out PDE-G-CNN
implementation. Were our G-CNN implementation equally
optimized we expect G-CNNs to be slightly faster than the
PDE-G-CNNs in our experiments.

CNN G-CNN PDE-CNN
DRIVE 6-layer 1.7s 6.5s 6.8s
DRIVE 12-layer 2.2s 14.1s 9.8s
RotNIST 0.1s 0.9s 0.7s

Table 3 Time in seconds it took to run each model on the testing dataset
of its respective experiment. The DRIVE testing dataset contains 20
images while the RotNIST testing dataset contains 10000 digits.

Fig. 17 Schematic of the three models tested with the RotNIST data.
Kernel sizes and number of feature channels in each layer are indicated.
Omitted are activation functions, batch normalization and dropout
modules.

8 Conclusion

In this article we presented the general mathematical frame-
work of geometric PDEs on homogeneous spaces that under-
lies our PDE-G-CNNs. PDE-G-CNNs allow for a geometric
and probabilistic interpretation of CNNs opening up new
avenues for the study and development of these types of
networks. We showed that additionally, PDE-G-CNNs have
increased performance with a reduction of parameters.

PDE-G-CNNs ensure equivariance by design. The train-
able parameters are geometrically relevant: they are left-
invariant vector and tensor fields.

PDE-G-CNNs have three types of layers: convection,
diffusion and erosion/dilation layers. We have shown that
these layers implicitly include standard nonlinear operations
in CNNs such as max pooling and ReLU activation.

To efficiently evaluate PDE evolution in the layers, we
provided tangible analytical approximations to the relevant
kernel operators on homogeneous spaces. In this article
we have underpinned the quality of the approximations in
Theorem 1 and Theorem 2.

With two experiments we have verified that PDE-G-CNNs
can improve performance over G-CNNs in the context of
automatic vessel segmentation and digit classification. Most
importantly, the performance increase is achieved with a vast
reduction in the amount of trainable parameters.
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Appendix A Proof of Lemma 2

The left inequality follows directly from the observation that
𝜌G (𝑝) is exactly the Riemannian length of the curve

𝑡 ↦→ exp𝐺 (𝑡 log𝐺 (𝑔𝑝))𝑝0

for 𝑡 ∈ [0, 1] and 𝑔𝑝 = argmin𝑔∈𝑝
log𝐺 𝑔G̃ . This continu-

ous curve connects 𝑝0 with 𝑝 and as such has a greater length
than the minimal-length curve between those two points.
Proving the right inequality requires some preliminaries.

Let 𝐺0 ⊂ 𝐺 be a compact neighborhood of 𝑒 so that
– the map 𝜋 restricted to 𝐺0 is a submersion,
– it is away from the cut-locus,
– the group logarithm is a diffeomorphism from 𝐺0 to
log𝐺 (𝐺0) ⊂ 𝑇𝑒𝐺,

For each of these three conditions there exists a compact
neighborhood of 𝑒 that satisfied it so we can always obtain
𝐺0 by taking their intersection.
Now we construct three coordinate charts:

– 𝑥 : 𝐺0 → 𝑋 = Rdim(𝐺/𝐻 ) ⊕ Rdim(𝐻 ) ,
– 𝑦 : 𝜋(𝐺0) → 𝑌 = Rdim(𝐺/𝐻 ) ,
– 𝑧 : log𝐺 (𝐺0) → 𝑍 = Rdim(𝐺/𝐻 ) .

First, since 𝜋 : 𝐺0 → 𝐺/𝐻 is a submersion it follows
from the Submersion Theorem that there exists a smooth chart
𝑥 from 𝐺0 to 𝑋 = Rdim(𝐺/𝐻 ) ⊕ Rdim(𝐻 ) and a smooth chart
𝑥 ′ from 𝜋(𝐺0) to Rdim(𝐺/𝐻 ) so that

𝑥 ′ ◦ 𝜋 ◦ 𝑥−1
(
𝑥1, . . . , 𝑥dim(𝐺/𝐻 ) , 𝑥dim(𝐺/𝐻 )+1, . . . , 𝑥dim(𝐺)

)
=

(
𝑥1, . . . , 𝑥dim(𝐺/𝐻 )

)
,

i.e. in 𝑋 the coordinates of the equivalence classes of 𝐺/𝐻
are orthogonal to the first dim(𝐺/𝐻) coordinates.
Second, since 𝜋(𝐺0) is away from the cut-locus it admits

a normal coordinates chart 𝑦 : 𝜋(𝐺0) → 𝑌 = Rdim(𝐺/𝐻 ) with
respect to G. Since the coordinates given by 𝑦 are normal we
have that:

∀𝑝 ∈ 𝜋(𝐺0) : |𝑦(𝑝) | = 𝑑G (𝑝0, 𝑝),

i.e. the Euclidean norm on 𝑌 agrees with the metric on 𝐺/𝐻.
The third mapping 𝑧 : 𝑇𝑒𝐺 → 𝑍 = Rdim(𝐺/𝐻 ) is a con-

catenation of chart and projection, we are are only interested
in the coordinates of the vector component that is orthogo-
nal to 𝑇𝑒𝐻, i.e. we disregard the degenerate part of G̃ |𝑒. In
the non-degenerate subspace we want the coordinates to be
normal with respect to G̃ |𝑒, or:

∀𝑔 ∈ 𝐺0 : |𝑧(log𝐺 (𝑔)) | =
log𝐺 (𝑔)G̃ ,

i.e. the Euclidean norm on 𝑍 agrees with the seminorm on
𝑇𝑒𝐺.
The relation between all these mappings and spaces is

illustrated in Fig. 18.

Let us now define the composite maps Ω := 𝑦 ◦ 𝜋 ◦
𝑥−1 and Γ := 𝑧 ◦ log𝐺 ◦ 𝑥−1. By construction we have the
following properties:

|Ω(𝒙) |2 = 𝑑G
(
𝑝0, 𝜋

(
𝑥−1 (𝒙)

))2
and

|Γ(𝒙) |2 =
log𝐺 (

𝑥−1 (𝒙)
)2

G̃
,

(53)

for all 𝒙 ∈ 𝑥(𝐺0). Our inclusion of the squared Euclidean
norm here is for a reason. Suppose you have a smooth function
𝐹1 : R𝑚 → R𝑛 with 𝐹1 (0) = 0 and a smooth function
𝐹2 : R𝑛 → R also with 𝐹2 (0) = 0 and 𝐷 |0𝐹2 = 0. Then
𝐷 |0 (𝐹2 ◦ 𝐹1) = 0 and also

𝐷2 |0 (𝐹2 ◦ 𝐹1) (𝒗, 𝒘)

= 𝐷2 |0𝐹2 (𝐷 |0𝐹1 (𝒗), 𝐷 |0𝐹1 (𝒘)) + 𝐷 |0𝐹2
(
𝐷2 |0𝐹2 (𝒗, 𝒘)

)
= 𝐷2 |0𝐹2 (𝐷 |0𝐹1 (𝒗), 𝐷 |0𝐹1 (𝒘)) .

Now we substitute 𝐹2 = Ω or 𝐹2 = Γ and 𝐹1 = ‖ · ‖2. As a
result we have:

|Ω(0) |2 = |Γ(0) |2 = 0, 𝐷 |0
(
|Ω|2

)
= 𝐷 |0

(
|Γ|2

)
= 0,

and

𝐷2 |0
(
|Ω|2

)
= 2 |𝐷 |0Ω|2 , 𝐷2 |0

(
|Γ|2

)
= 2 |𝐷 |0Γ|2 .

Taking these properties we can write the Taylor series of |Ω|2
and |Γ|2 around 0 as follows:

|Ω(𝒙) |2 = |Ω(0) |2 +
[
𝐷 |0

(
|Ω|2

)]
(𝒙)

+ 1
2!

[
𝐷2 |0

(
|Ω|2

)]
(𝒙, 𝒙) +𝑂 ( |𝒙 |3)

= |𝐷 |0Ω(𝒙) |2 +𝑂 ( |𝒙 |3),

|Γ(𝒙) |2 = |Γ(0) |2 +
[
𝐷 |0

(
|Γ|2

)]
(𝒙)

+ 1
2!

[
𝐷2 |0

(
|Γ|2

)]
(𝒙, 𝒙) +𝑂 ( |𝒙 |3)

= |𝐷 |0Γ(𝒙) |2 +𝑂 ( |𝒙 |3).

Now the linear maps 𝐷 |0Ω and 𝐷 |0Γ on the space 𝑋 =

R�̃� ⊕R𝑘 both vanish in the R𝑘 subspace and are non-singular
in the R�̃� subspace (i.e. invertible), hence we can conclude
that:

∃𝐶 > 0, ∀𝒙 ∈ 𝑥(𝐺0) : |Γ(𝒙) | ≤ 𝐶 |Ω(𝒙) | .

Or stated differently using (53):

∃𝐶 > 0,∀𝑔 ∈ 𝐺0 :
log𝐺 (𝑔)G̃ ≤ 𝐶 𝑑G (𝑝0, 𝑔𝑝0) .

Now we are almost there. Given any 𝑝 ∈ 𝐺/𝐻 so that
𝑝 ∩ 𝐺0 ≠ ∅ we know that for all 𝑔 ∈ 𝑝 ∩ 𝐺0 the above
inequality holds. Since taking the infimum of the seminorm
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Fig. 18 Relation of mappings used for the proof of Lemma 2. Through the local submersion theorem we obtain a chart 𝑥 from a compact neighborhood
𝐺0 of 𝑒 to 𝑋 = Rdim(𝐺) . In 𝑋 moving inside the equivalence classes is orthogonal to moving between equivalence classes. From the coordinate
space 𝑋 we can construct smooth maps to coordinate spaces 𝑌 and 𝑍 of 𝐺/𝐻 respectively 𝑇𝑒𝐺. The spaces 𝑌 and 𝑍 are constructed so that in
them the Euclidean norm matches the metric 𝑑G respectively the seminorm ‖ · ‖G̃ of the corresponding elements. Mapping the metric and seminorm
to the shared linear space 𝑋 allows their comparison.

over the whole equivalence class 𝑝 will yield a value lower
or equal than that of the seminorms in 𝑝 ∩ 𝐺0 we have:

∀𝑝 ∈ 𝐺0/𝐻 : inf
𝑔∈𝑝

log𝐺 (𝑔)G̃ ≤ 𝐶 𝑑G (𝑝0, 𝑝) .

ut
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